Inhalt des Dokuments
Es gibt keine deutsche Übersetzung dieser Webseite.
Course Outline
This course introduces to fundamental properties of chaotic dynamical systems. It is based on rigorous mathematical concepts applied to time-discrete one-dimensional maps. These models are easy to understand and analytically tractable.
Topics:
- Simple examples of dynamical systems: driven nonlinear pendulum, bouncing ball, billiards, kicked rotor, standard map, Bernoulli shift, tent map, logistic map, rotation on the circle, piecewise linear maps
- Topological properties of one-dimensional maps: cobweb plots, periodic points, periodic orbits, stability analysis, bifurcations, expanding/contracting maps, hyperbolicity, topological transitivity, sensitive dependence on initial conditions
- Probabilistic properties of one-dimensional dynamics: Frobenius-Perron equation and -operator, partitions, invariant measure, absolute continuity, SRB measure
- Assessing chaos, and related properties: Poincaré-Bendixson theorem, Poincaré surface of section, rigorous definitions of chaos, Lyapunov exponents, ergodicity, mixing, entropies, Pesin’s theorem, escape rates, Cantor set, fractals
Zusatzinformationen / Extras
Direktzugang:
Schnellnavigation zur Seite über Nummerneingabe