With
$$\delta = \delta ig = \sum_{k} S_{k} C_{k}^{*}C_{k}^{*}$$

SRL $C = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S_{k} C_{k}^{*}C_{k}$

(2/1)=Tile -: Ho. 2 (] habae -i hat bae + ha bae + haba e + habae = (] haba + haba =] = [|an| 2 [e+i6,2 e-i6,4 (1+6,6)) + e-i6,2 +i6,2 (4,6)] = 1 (176) [e +int -; at [1+ho(n)] + e -int +; nt ho |] du = 1 [[[148/4] [[6/4]] [6/4]] = int da + 7 ([[] (no | - w) 6 | - w) e + int e - int du ~) 7 = (7/4) [1+40/4) (-0/4) e + (1/4) 40/4) O(-4) e + (42 -in (6-hostegl. etilet fit either = 52 第三[7-(元元) 6*第6*-7-(0,元) 第]+[7+(元元) 6*第6*-7+(0,元) 第] $S_{00} = \frac{[7 - (2, \bar{c}) - 7 - (9\bar{c}) + 7 + (2, \bar{c}) - 7 + (0, \bar{c})] 7 p_{00}}{7 p_{00}}$ $S_{01} = [-7 - 7 - 7 - 7 + (0, \bar{c})] 7 p_{00}$ $S_{01} = [-7 - 7 - 7 - 7 + (0, \bar{c})] 7 p_{00}$ $C(\mathcal{Z}_{1}t) = L_{1} \operatorname{Tr}\{e^{Z(z) \cdot t} g_{0}\}$ $= L_{1} \left(1, 1, 0, 0\right) \left(\begin{array}{c} Z(z) \cdot t \\ e \end{array} \right) \left(\begin{array}{c} g_{0} \\ g_{0} \\ g_{0} \end{array} \right)$ $= \int_{\mathbb{R}} e^{\int_{\mathbb{R}} \frac{1}{2\pi i} dx} \frac{1}{2\pi i} \frac{1}$ $d = \frac{1}{\sqrt{2\pi}} \int_{-1}^{2\pi} \frac{du}{du} \int_{-1}^{2\pi} \int_{-1}^{2\pi} \frac{du}{du} \int_{-1}^{2\pi} \int_{-1}^{2\pi} \frac{du}{du} \int_{-1}^{2\pi} \int_{-1}$

