d) Zusammenfassing des Europehorneturen f. 1 Elekhor stom

$$\Delta \overline{F}_{1} = \frac{Ryd}{2} \left(\frac{2}{2} \times \right)^{2} \frac{1}{4} \left(\frac{3}{4} - \frac{4}{R + \frac{1}{2}}\right)$$

$$Stela klim frohe Quaterall ablication$$

$$\Delta E_2 = Ryd \left(\frac{2}{4}\omega\right)^2 \frac{1}{4}s \delta e_{10}$$
 ws s-Zwhinch

$$\Delta \overline{E}_{3} = \begin{cases} 0 \\ \frac{1}{2} \operatorname{Pyd} \left(\frac{2}{4} u\right)^{2} \frac{1}{u^{2}} \frac{1}{\ell(\ell+1)(\ell+\frac{1}{2})} \end{cases} \begin{cases} \ell = 0 \\ \cdot \ell \text{ we up } j = \ell+\frac{1}{2} \end{cases}$$

$$\Delta E = \Delta E_{4e} \rightarrow \Delta E_{4}$$
 (wird gezwigt)

1. Fill
$$\ell=0$$

$$\Delta E_{\mu \ell=0} = \Delta E_{\tau} + \Delta E_{z} = R_{yd} \left(2\chi\right)^{2} \frac{1}{\mu^{4}} \left(\frac{3}{4} - 2\mu + \mu\right)$$

$$= R_{yd} \left(\frac{3}{4}\chi\right)^{2} \frac{1}{\mu^{4}} \left(\frac{3}{4} - \mu\right)$$

$$= \operatorname{Ryd} \left(\frac{2}{4} \right)^{2} \frac{1}{4^{4}} \left(\frac{3}{4} - \frac{4}{1 + \frac{1}{2}} \right) \implies \Delta E_{ij}$$

Vergled de Forme f. l=0, l+0 mt Kembris l=0 -> j=1

$$\Delta E_{4j} = R_{yd} \left(\frac{2}{4} \right)^{2} \frac{1}{4^{4}} \left(\frac{3}{4} - \frac{4}{j+\frac{1}{2}} \right)$$

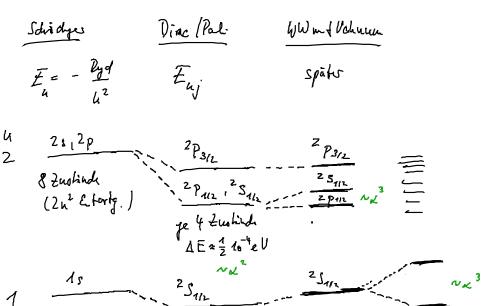
relativist. E negle howether bein 1 Electron Abon wit k-hadpeall & Beundy: Wasserstoff- Direc problem han exact golder Grede, Etwilly. d. Fyie Fuj in Ordyn (x 2) 2 gibt well das Remett oben.

5.3. Bispiel H- Atom: mlationist. E- Shuller

$$\frac{3 = \frac{1}{2}}{1} \quad i \quad u = 1, l = 0; \quad u = 2, \quad l = 0, 1 \quad (Jandqua : F_{ij})$$

$$\frac{1 = \frac{1}{2}}{1 = \frac{1}{2} \cdot \frac{3}{2}} \quad (Pirac : F_{ij})$$

Good 2 with a wal Direc:
$$E_{n=1,j=\frac{1}{2}} = -kyd - \frac{1}{4} \log x^2$$

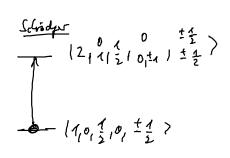

1. aprylor 2 without wast Direc: $E_{n=2,j=\frac{1}{2}} = -\frac{kyd}{4} - \frac{5}{2^6} kydx^2$

$$E_{n=2,j=\frac{3}{2}} = -\frac{kyd}{4} - \frac{1}{2^6} kydx^2$$

of kirthin wir $E_{j=\frac{3}{2}}$ yewin shal abquesent at $E_{j}=\frac{1}{2}$

Shirty: We Direct N ey

$$\frac{1}{2} \frac{1}{2} \frac{1}$$



4 Gobshill " Firstelle" "Lambshift" Kemspir of "WW

4 Hypefirshille"

nlahinið. Korelh fih er Afspeldy de j-Zustind dabai blak Zustind mis gliber & engelisch ichtisch Volum pulhation (Shel appled quitilies.) like s-p Etorty and

Detelion d. nlowist Kombkon:

Ophlish Amarel Al = 11

5.4. Beispiel H-Aton: Zeemen Effell unt nlohvrist. Kombbre

Exeliste hie Ewerly west, etc with it juy au ped. 21 werde

quiell:
$$\langle ulsym_{j} | \hat{S}^{2} | ulsym_{j} \rangle$$

= $\langle ullnl_{2} | \langle lsym_{j} | \hat{S}^{2} | lsym_{j} \rangle$
 $\uparrow \chi_{un}(y) | \hat{X}_{un} \rangle$
 $\uparrow \chi_{un}(y) | \hat{S}^{2} | (lu_{e}) | \hat{S}^{2$

whipsin unt
$$\frac{t_1}{2} \left(\frac{*}{*} < u_e l | (1,0) + \beta_+^* < l u_e + 1 | (0,1) \right)$$

$$\left(\frac{*}{*} | l u_e > \left(\frac{1}{6} \right) + \beta_+ | | l u_e + 1 > \left(\frac{0}{-1} \right) \right)$$

$$= \frac{t}{2} \frac{\ell + u_e + 1 - \ell + u_e}{2\ell + 1} = \frac{t}{2} \frac{2u_e + 1}{2\ell + 1} = \frac{t_e u_e^{-1}}{2\ell + 1}$$

Eurie af spelf in Agentfeld!
$$1=l+\frac{1}{2}$$

$$\Delta E_B = \mu_B B \omega_j \left(1 + \frac{1}{2l+1}\right)$$

prop. B

$$j^2 \int_{l=l-\frac{1}{2}}^{l=l-\frac{1}{2}} (d\omega bcwis)$$

$$J=l+\frac{1}{2}$$

$$\omega_j = l+\frac{1}{2}$$

$$\omega_j = l-\frac{1}{2}$$

$$\omega_j = -(l-\frac{1}{2})$$

Shoulds partfeld

Autopally ill on l ablique, which was $\omega_j \leq l$

(award teens effects)