5. Bindung, zustände von Afonsen und Kernschningunge

- · Molehöle and Fastiopps: Binduy zustände v. Aboma,

 burch Energie zufer Mgl. d. Dissoziation
 in Enalatoma
- stellt homphizierks Vieltild problem: Eldhom + Kerne + WW (centomb-WW > blassischer Beiby > ionische Birdy. > gun Beibng -> hovolek Birdg.
- · Untersolvied Kern Elethon wasse: $\frac{u_0}{u_K} = 10^{-3} 10^{-5}$
 - -> Klin fiße: Godlye eins Approximationschemas:

 4 Born Oppahino Approximation

(Elelhon sind schuell, Kerne sind laups am :

Elelhon dynamic folgt instaction (sofort) du Keondy warnis)

5.1. Born - Opper his no Approximetion

Idre de Born-Oppelier höhrg: - Zunadet ist H4 wood exalt, bis he Kein Noiley. - problemsid & (4,2) und gewirdt fredinkterna - 8 ~ The of ist Klinger die Albanish Ergil (Tupus d. Kerning) - , story Kenchied belandedt Zuhal für Bore- Oppe him Nöby I wilk Niby: dut X tile und aushller $\left(H_{el} + W_{el-k}\right) \varphi(i,k) = \left(\overline{E} - \frac{H_k \chi(k)}{\chi(k)}\right) \varphi(i,k)$ Slelha in fetzelelha Kenpoldul Eel (k) = elelhaijst Engie - into printer at Schoolizege. J. Eller in Kenpothiel Walk (i) (Tel + Vel-el + Wel-k) 4 (i, k) = Fel (k) 4 (i, k) Egy wat proble 1. Ellhon be feste Kernbonfigurelion & K} - dualtall & for Sellisman bann of voret gelost word for & K & , all! dh. Eel (K/ ist jelt beslimment $(i;)\left(T_{k}+V_{k-k}+\overline{E}_{el}(k)\right)\chi_{m}^{e}(k)=\overline{E}_{m}\chi_{m}^{e}(k)$ egilt sid au Ref. von F.o (k) Eige wot probbe f. die Kerne bis vorgegeben elilhienisch Engie

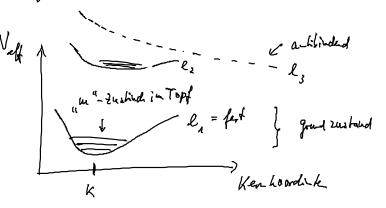
VK-K + Fee (k) bildet in effettin Potent f. Kerne

Veff

l - Abhärgight übshigt sich m - Quant tall dis Kepne bi feten l und Kenkarfguhir "m".

gemissan hos va (i) and (ii):

1) 2 uniet (i) lose fi all ruge \$k\-kanfigution

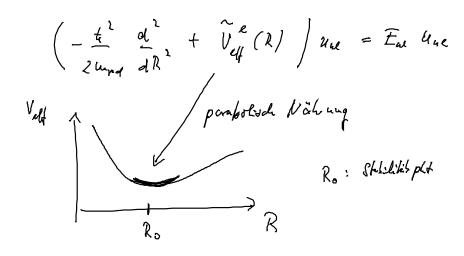

Kenhoord: wat blein parantivel in fr. stelen

Noverts lösg. & \$k\}

2) jeld Egrandproblem J. Xm (k) lose untbehand Ele (k)

3) Aus will live hig. wit Bildy 24 band , book such wall emplish tief she Zushand:

40 wird I'm unglit tief sei: fundenshand?



5.2. Beispiel Hz-Moelil

System out 2 Keyne $\overline{R}_1 \quad \overline{R}_2$ $(i) \quad H_{ell} = \overline{Z} - \frac{\xi^2 \Delta i}{2m_{ell}} \quad -\frac{q^2}{4\overline{u}\xi_0} \quad \overline{Z} | \overline{T}_i - \overline{R}_K | + V_{ell-zel}$

The Web-k Web-k fedgeleth Kerne gibt $\psi(\vec{r}_{1},\vec{r}_{2}) = (\psi_{11}^{A}(\vec{r}_{1})\psi(\vec{r}_{2}) + \psi_{11}^{A}(\vec{r}_{2})\psi_{11}^{B}(\vec{r}_{1})$ - ach synn. Spir flt.

(ii) Belandly d. Ken frih by goods: $\left[\frac{1}{R_{1}} - \frac{1}{R_{2}}\right] = R$ $\left(\frac{4}{2} \frac{1}{4} + V_{eff}(R)\right) \chi_{m}(R) = E_{m} \chi_{m}(R)$ reduced Master of Political as we Radhäught $\chi_{m}(R) = R_{m}(R)$ Yenz $\left(\frac{1}{2} \frac{1}{4} \frac{1}{4}\right)$ $\left(\frac{1}{2} + \frac{1}{2} \frac{1}{4} \frac{1}{4}\right) + \frac{1}{2} \frac{1}{4} \frac{1}{4}$

$$H = -\frac{t^{2}}{2m_{Rd}} \frac{d^{2}}{dt^{2}} + V_{eff}(R_{0}) + V_{eff}(R_{0})(R-R_{0}) + \frac{1}{2}V_{eff}(R_{0})(R-R_{0})$$

$$= 0 \quad (R_{1}m_{1}m_{2})$$

$$R \rightarrow x = R - R_0$$

Eige wolglich. J. Kensbstand mit EF une

laus Yeure

4 au hamouise Oscillator

$$E_{al} = V_{eff}(R_0) + \frac{4^2 e(\ell+1)}{2 u_{red} k_0^2} + t_{i} w_{e} \left(4 + \frac{1}{2}\right)$$

$$an V_{K-K}(R_0) + E_{el}(R_0) \quad Robbious egie \quad an V_{eff} \quad und un perform the solven performs between the s$$

Stolieg. d. Fuyie and Follow mid in it is a stole of the sol of th

 $\overline{R}_{K} = \left(q_{1}(k), q_{1}(k), q_{3}(k)\right)$ karterisch Kaardent d. K-ter Kerns i = 1,2,3

$$V_{eff}^{\ell} = V_{eff}^{\ell} \left(q_{i}^{\circ}\right) + \sum_{i,k} \partial_{q_{i}(k)} V_{eff}^{\ell} \left(q_{i}^{\circ}(k)\right) \delta q_{i}(k)$$

$$= O\left(R_{i}u_{i}u_{k}\right)$$

+ 1 Z 2 2; (k) 2 fi (k) V (q: (k)) 89.(k) 8 (4)

ke' 4: (k) 2 fi (k) V (q: (k)) 89.(k) 8 (4)

- quadried Form in Sq;

Lagraflet: $L = \frac{2}{i_{ik}} \frac{w(k)}{2} \delta_{q_i}^{2}(k) - \frac{1}{2} \sum_{i_i} V_{i_i}^{kk'} \delta_{q_i}(k') \delta_{q_i}(k')$

quadrisch Form bour imm diagondviert werch Vii' sind Krafthonstanten der lon auslente.

un (k/ Sq; (k) = - \(\subseteq \) \(\text{ii'} \) \(\delta \) \(\d

tion diagodisid wild it Normal solvings. / Normal lood; he $\sqrt{m(k)} \operatorname{Sq}_{i}(k) \equiv \times_{i}(k) = \sum_{\alpha} y_{\alpha} e^{i\omega_{\alpha} t} A_{i}^{k}(\omega_{\alpha})$

Ausah f. ungeloppelh Oszilldon mit Amplikade ya

Ali (wol) sind a bestimme so de p went Oszilleh (xl unosher) sing

Wol Freque et Norme mode

Auselt Eltch is Bewrggsgl.:

$$\mathcal{C}_{\alpha}^{2} \overset{k}{\lambda}_{i}^{k} \left(\omega_{\alpha} \right) = \sum_{i'k'}^{2} \overset{k}{V_{ii'}}^{k'} \overset{k}{\lambda}_{i'}^{k'} \left(\omega_{\alpha} \right) \quad \text{Matix plints}.$$

$$\overset{\sim}{V_{ii'}}^{kk'} = \underbrace{\overset{\sim}{V_{ii'}}^{kk'}}_{i''} \overset{\sim}{V_{ii'}}^{kk'}$$

$$dl: Z A_i^k(\omega_x) A_i^k(\omega_p) = \delta_{xp}$$
 (Orke galifet de
ik Equivalence)

liksely is L:

alle Moderil solving hörne als sam ungehoppelt Oszillebor ya beselvibe woods and danificited quachiliet.