Technische Universität Berlin Institut für Theoretische Physik Prof. Dr. K.-E.Hellwig

2. Übungsblatt zur Quanteninformationstheorie I u.II

22.05.06

Abgabe: 05.06.06

Nächste Übung: Do., 25.05.06, 16:15, Raum PN731

Aufgabe 4 (3 Punkte): Die Zustände ρ eines Quantensystems sind durch die konvexe Menge der positiven Spuklasseoperatores mit $\text{tr}\rho = 1$ eines Hilbertraumes \mathcal{H} gegeben.

- **4.1 Man zeige**, dass ${\rm tr} \rho^2=1$ die Extremalpunkte dieser konvexen Menge charakterisiert.
- **4.2 Man zeige**, dass jeder Dichteoperator des \mathbb{C}^2 in der Form $\rho = (1/2)(1 + x \cdot \sigma)$ geschrieben werden kann, wobei $x \in \mathbb{R}^3$, , $||x|| \leq 1$, σ_i die Paulimatrizen sind, $x \cdot \sigma = \sum x_i \sigma_i$ ist und $x \mapsto \rho$ affin und bijektiv ist (Blochkugel).
- **4.3 Man zeige**, dass die Extremalpunkte der Blochkugel (Blochshäre) mit den Zuständen $\psi = \cos(\Theta/2)|0> +e^{i\varphi}\sin(\Theta/2)|1>$ korrespondieren, wobei (Θ,φ) sie Polarkoordinaten des Punktes sind.

Aufgabe 5 (3 Punkte): Die Zerlegung eines gemischten Zustandes in reine Komponenten ist nicht eindeutig. Seien ψ_i , (i = 1, 2, ..., M), φ_k , (k = 1, 2, ..., K), $||\psi_i|| = ||\varphi_k|| = 1$, sonst beliebig in \mathcal{H} . Man betrachte

$$\rho = \sum p_i \psi_i, \quad \sigma = \sum q_k \varphi_k \quad (p_i, q_k > 0, \sum p_i = \sum q_k = 1)$$

und zeige: Es gilt $\rho = \sigma$ genau dann, wenn es mit $\tilde{\psi}_i := \sqrt{p_i}\psi_i$ und $\tilde{\varphi}_k := \sqrt{q_i}\varphi_i$ Zahlen $uik \in \mathbf{C}$ gibt, so dass

$$\tilde{\psi}_i = \sum_k u_{ik} \tilde{\varphi}_k$$
 und $\sum_i \bar{u}_{ik} u_{ij} = \delta_{kj}$

ist. (*Hinweis:* Dass das Kriterium hginreicht ergibt sichn durch einfaches Vorwärtsrecgnen, um seine Notwendigkeit zu zeigen, denke man sich $\rho = \sigma$ spektral zerlegt.)

Aufgabe 6 (4 Punkte): Die Kommutatoralgebra der spurfreien antihermitescen 2×2 Matrizen ist zur Lie-Algebra der Drehgruppe isomorph. Um diese Isomorphie konkret zu machen, identifiziere man die $(i/2)\sigma_k$, k=1,2,3 mit den Erzeugenden der Drehungen um die jeweilige Koordinatenachse. **Man berechne** die Matrizen der Spindrehungen um die **e**-Achse im positiven Sinn durch Aufzummieren der Exponentialreihe

$$R_e(\phi) = e^{-(i/2)\mathbf{e}\cdot\sigma\phi}, \quad \mathbf{e} \in \mathbf{R}^3, \|\mathbf{e}\| = 1,$$

die mit den entsprechenden Drehungen im \mathbf{R}^3 zu identifizieren sind. (*Hinweis:* Es gilt $(\mathbf{e} \cdot \sigma)^2 = 1$.) Was ebedeutet es, dass $R_{\mathbf{e}}(2\pi) = -1$ und erst $R_{\mathbf{e}}(4\pi) = 1$ ist?