Technische Universität Berlin Institut für Theoretische Physik Prof. Dr. Eckehard Schöll, PhD. Dr. Frank Elsholz

11. Übungsblatt

Theoretische Festkörperphysik II

Aufgabe 22 pn-Übergang

(8 Punkte)

Ausgabe: 27. Juni 2006

SS 2006

Ein Silizium-Kristall (ϵ =11.9, $E_{\rm gap}$ =1.1 eV) sei für x<0 mit Bor ($N_a=10^{17}{\rm cm}^{-3}$) und für x>0 mit Phosphor ($N_d=10^{16}{\rm cm}^{-3}$) dotiert. Die Temperatur sei 300 K. Die effektiven Zustandsdichten im Leitungs- und Valenzband betragen dabei $N_C=3.2\times10^{19}{\rm cm}^{-3}$ und $N_V=1.8\times10^{19}{\rm cm}^{-3}$.

- a) Das Schottky-Modell (Verarmungsnäherung) nimmt an, daß für $x > -x_p$ die Akzeptoren vollständig besetzt und für $x < x_n$ die Donatoren vollständig ionisiert sind. Die Löcherund Elektronenkonzentrationen im Valenz- und Leitungsband sind in diesem Bereich gegen N_a und N_d vernachlässigbar. Außerhalb dieses Bereichs liegt Ladungsneutralität und ein jeweils konstantes elektrisches Potential vor. Berechnen Sie für eine vorgegebene Potentialdifferenz $\Delta V = V(-x_p) V(x_n) > 0$ die Verarmungsbreiten x_n und x_p .
- b) Bestimmen Sie unter der Annahme, daß alle Störstellen vollständig ionisiert sind, die Lage der Fermi-Niveaus beider Teilschichten außerhalb der Verarmungszone und bestimmen Sie daraus ΔV_0 für die Diode im thermodynamischen Gleichgewicht. Skizzieren Sie die Bandkanten und das Fermi-Niveau.
- c) Nehmen Sie an, daß sich der Gleichgewichtswert n_0 der Ladungsträgerkonzentration über eine konstante Relaxationszeit einstellt: $\dot{n} = (n_0 n)/\tau_n$. Bestimmen Sie daraus das Ladungsträgerprofil für $x < -x_p$, wenn $n(-x_p)$ konstant ist, und berechnen Sie die Diffusionslänge $L_n = \sqrt{D_n \tau_n}$. Führen Sie die entsprechende Rechnung für die Löcher bei $x > x_n$ durch. Verwenden Sie die Diffusionskonstanten $D_n = D_p = 10 \text{cm}^2/\text{s}$ und die Lebensdauern $\tau_n = 30 \mu \text{s}$, $\tau_p = 100 \mu \text{s}$.
- d) Durch das Anlegen einer äußeren Spannung U wird nun $\Delta V = \Delta V_0 U$. Begründen Sie anhand Aufgabe c), daß man für die Löcher bei x_n das Quasi-Ferminiveau $E_{Fp}(x_n) = E_{Fp}(-x_p)$ und für die Elektronen bei $-x_p$ das Quasi-Ferminiveau $E_{Fn}(-x_p) = E_{Fn}(x_n)$ ansetzen kann. Skizzieren Sie die einzelnen Quasi-Ferminiveaus und die Bandkanten. Berechnen Sie daraus $n(-x_p)$ und $p(x_n)$.
- e) Berechnen Sie anhand von Aufgabe c) die Diffusionsströme $j_p(x_n)$ und $j_n(-x_p)$ und bestimmen Sie daraus die Kennlinie der Diode: j = j(U).

Aufgabe 23 Kombinierte Zustandsdichte

(4 Punkte)

Bestimmen Sie die kombinierte Zustandsdichte

$$D_{v,l}(\omega) = \frac{2}{(2\pi)^3} \int d^3k \delta(E_l(\mathbf{k}) - E_v(\mathbf{k}) - \hbar\omega)$$

unter der Annahme eines parabolischen Leitungs- und Valenzbandes mit den effektiven Massen m_l und m_v .

Abgabe: 7. Juli 2006

WWW-Seite: http://wwwitp.physik.tu-berlin.de/lehre/TFP/

Scheinkriterien: Einmal Vorrechnen in den Übungen und eine erfolgreiche Rücksprache. *und* 60 % der erreichbaren Punkte in den Übungsaufgaben (Abgabe in Dreiergruppen!)

Sprechstunden: Schöll: Mi 14:30 - 15:30 Uhr PN 735, Elsholz: Di. 14 - 15 Uhr PN 629