wwwitp.physik.tu-berlin.de/lehre/TPIIIa

2. Übungsblatt zur Theoretische Physik IIIa: Quantenmechanik

Abgabe: Dienstag 02.05.06 in der Vorlesung

Aufgabe 3(8 Punkte): Basiswechsel

Seien \mathcal{A} und \mathcal{B} zwei Matrizen, so daß zwei orthonormierte Basen $\{|\alpha_n\rangle\}_{n\in\mathbb{N}}$ und $\{|\beta_n\rangle\}_{n\in\mathbb{N}}$ existieren, welche nur aus Eigenvektoren der Matrix \mathcal{A} bzw. der Matrix \mathcal{B} bestehen. Außerdem gehen wir hier zur Vereinfachung davon aus, daß die zugehörigen Eigenwerte α_n bzw. β_n nichtentartet sind (also der zu einem Eigenwert gehörige Eigenraum eindimensional ist). Mit \mathcal{A} - bzw. \mathcal{B} -Darstellung bezeichnen wir die Darstellung in der Basis $\{|\alpha_n\rangle\}_{n\in\mathbb{N}}$ bzw. $\{|\beta_n\rangle\}_{n\in\mathbb{N}}$.

- Es sei die \mathcal{A} -Darstellung von $|\psi\rangle$ gegeben durch $a_n:=\langle\alpha_n|\psi\rangle$ (d.h. $|\psi\rangle=\sum_n a_n|\alpha_n\rangle$). Welche Form hat $|\psi\rangle$ in der \mathcal{B} -Darstellung? (Gesucht werden also die Koeffizienten b_n in Abhängigkeit von den Koeffizienten a_n , wobei $|\psi\rangle=\sum_n b_n|\beta_n\rangle$ gilt.)
- Welche Form hat die Matrix \mathcal{A} in der \mathcal{A} (Tutorium) und in der \mathcal{B} -Darstellung (Aufgabe), d.h. wie sieht der Vektor $\mathcal{A}|\psi\rangle$ in der jeweiligen Darstellung aus, wenn $|\psi\rangle$ in eben dieser Darstellung gegeben ist?
- Seien $\mathcal{A}=\left(\begin{smallmatrix}0&1\\1&0\end{smallmatrix}\right)$ und $\mathcal{B}=\left(\begin{smallmatrix}0&i\\-i&0\end{smallmatrix}\right)$. Gegeben sei der Vektor $|\psi\rangle=5|\alpha_1\rangle+3|\alpha_2\rangle$ (mit $\alpha_1=-1$ und $\alpha_2=1$). Berechnet aus der gegebenen \mathcal{A} -Darstellung von $|\psi\rangle$ die \mathcal{B} -Darstellung und gebt \mathcal{A} in beiden Darstellungen an. Tipp: Bestimmt zuerst die Eigenwerte und Eigenvektoren von \mathcal{A} und \mathcal{B} in der gegebenen Darstellung und wendet dann die Ergebnisse aus den vorhergehenden Teilaufgaben an.

Aufgabe 4(12 Punkte): Orts- und Impulsoperatoren

In diesem Aufgabenteil betrachten wir den Ortsoperator $\hat{\mathbf{x}}$ und den Impulsoperator $\hat{\mathbf{p}}_x$ in einer Dimension.

- Sei x_0 ein Eigenwert des Ortsoperators $\hat{\mathbf{x}}$. Gebt einen geeigneten Eigenvektor $\langle x_0|$ des Ortsoperators an, so dass $\langle x_0|\psi\rangle$ die übliche Orstdarstellung ist. (Tutorium)
- Findet geeignete Eigenvektoren $\langle p_0|$ des Impulsoperators, so dass $\psi(p_0) = \langle p_0|\psi\rangle$ die übliche Impulsdarstellung ist. Überprüft die Eigenschaft $\langle p_0|\hat{\mathbf{p}}_x|\psi\rangle = p_0 \cdot \langle p_0|\psi\rangle$. (Tutorium)
- Findet im Schema der Aufgabe 3 die Impulsdarstellung des Ortsoperators.
- Gebt den Hamiltonoperator

$$\hat{H} = \frac{1}{2m} (\hat{\mathbf{p}}_x - eA(\hat{\mathbf{x}}))^2 + V(\hat{\mathbf{x}})$$

in der Impulsdarstellung an. (D.h. wie sehen $\hat{H}|\psi\rangle$ bzw. $\langle p_0|\hat{H}|\psi\rangle$ aus, wenn ψ in Impulsdarstellung gegeben ist.) (Tutorium: Ansatz)

Bitte Rückseite beachten!---

Hinweise:

Scheinkriterien:

- Mindestens 50% der Übungspunkte (Abgabe in Dreiergruppen).
- Bestandene Klausur.
- Regelmäßige Teilnahme am Tutorium.

Es wird voraussichtlich insgesamt 11 reguläre Übungsblätter geben.

Übungsblätter werden Dienstag in der Vorlesung ausgegeben und eine Woche später am Ende der Vorlesung eingesammelt.

Zur Erinnerung: die Vorlesung findet

- Dienstags 9-10 Uhr, PN 229
- Mittwochs 10-12 Uhr, PN 229

statt.

Literaturtipps zur Lehrveranstaltung (nur eine Auswahl):

- A. Messiah, Quantenmechanik I und II, de Gruyter
- E. Fick, Einführung in die Grundlagen der Quantentheorie, Akademische Verlagsges.
- W. Nolting, Grundkurs Theoretische Physik Band 5 Quantenmechanik, Teil I+II, Springer
- C. Cohen-Tannoudji, Quantenmechanik I+II, de Gruyter

Kontakt: wwwitp.physik.tu-berlin.de/lehre/TPIIIa