Technische Universität Berlin Institut für Theoretische Physik Prof. Dr. Wolfgang Muschik Dipl.-Phys. Grigory Bordyugov

wwwitp.physik.tu-berlin.de/lehre/TPIa

3. Übungsblatt zur Theoretischen Physik Ia (Mechanik)

Abgabe: Do. 18. Mai 2006 in der Vorlesung

Aufgabe 5 (10 Punkte): Zwangsbedingungen

Stellen Sie die Zwangsbedingungen für die folgenden mechanischen Systeme auf und klassifizieren Sie diese (holonom-anholonom, rheonom-skleronom). Für holonome Zwangsbedingungen geben Sie die Anzahl von unabhägigen Variablen an, die den Zustand des Systems eindeutig beschreiben.

- 5.1 Ein sphärisches Pendel mit einer zeitabhängigen Länge l(t).
- 5.2 Ein Zylinder des Radius r rollt ohne zu rutschen auf der Mantelfläche eines weiteren Zylinders des Radius R. Die Symmetriachsen beider Zylinder sind parallel.
- 5.3 Eine Perle bewegt sich auf einem Draht, dessen Form einen Kegelschnitt darstellt (d.h. Parabel, Hyperbel, Ellipse). Der Draht rotiert mit einer konstanten Winkelgeschwindigkeit ω um eine der Symmetrieachsen des Kegelschnittes, z.B. um die grosse Halbachse der Ellipse. Hinweis: Stellen Sie die Gleichung des Kegelschnittes in Polarkoordinaten auf.
- 5.4 Eine Handkarre mit zwei koaxialen Rädern des Radius R, die dennoch voneinander unabhängig rotieren können. Die Zwangsbedingung muss die Bewegung des Mittelpunktes der Achse in Abhängigkeit von der Bewegung der beiden Räder beschreiben.
- 5.5 Ein ebenes Pendel der Länge *l* mit einem frei gleitenden Aufhängepunkt.

Alle Systeme sind reibungslos.

Bitte vergessen Sie nicht, Ihren Namen und Ihre Matrikelnummer auf das Lösungsblatt zu schreiben!!!