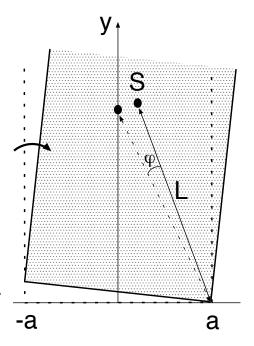

6. Übungsblatt zur Theoretischen Physik Ia (Mechanik)

Abgabe: Do. 22. Jun 2006 in der Vorlesung

Aufgabe 11 (6 Punkte): Normalschwingungen

Betrachten Sie drei identische Massen m, die über gleiche Federn (Federkonstante: k) untereinander und mit Wänden verbunden sind (siehe Abb.). Die Schwinger können sich nur horizontal bewegen.

- 11.1 Stellen Sie die Lagrange-Funktion und damit die Lagrange-Gleichungen 2. Art für die Auslenkungen der Massen aus ihren Ruhelagen auf.
- 11.2 Entkoppeln Sie diese Bewegungsgleichungen durch geeignete Normalkoordinaten und diskutieren Sie deren Lösungen.



Aufgabe 12 (4 Punkte): Schwankende Flasche

Betrachten Sie die Bewegung einer schwankenden (leeren) Flasche als ebenes Problem (siehe Abb.).

- 12.1 Wählen Sie als generalisierte Koordinate den Winkel φ (siehe Abb.). Der Drehpunkt sei für $\varphi < 0$ an der rechten unteren Ecke und für $\varphi > 0$ an der linken unteren Ecke. Stellen Sie die Lagrange-Funktion in Abhängigkeit von φ und $\dot{\varphi}$ auf. Formulieren Sie dabei die kinetische Energie mit Hilfe des gegebenen Trägheitsmoments J bzgl. der entsprechenden Drehachse: $T = \frac{1}{2}J\dot{\varphi}^2$.
- 12.2 Stellen Sie die Bewegungsgleichung auf.
- 12.3 Lösen Sie die Bewegungsgleichung für kleine Auslenkungswinkel φ . Zeigen Sie, dass die Frequenz der Schwingung im Gegensatz zum klassischen ebenen Pendel von der Amplitude abhängt.

Hinweis: Machen Sie sich klar, dass im Falle $\varphi \to 0$ die rücktreibende Kraft nicht vom Winkel φ abhängt.

Bitte vergessen Sie nicht, Ihren Namen und Ihre Matrikelnummer auf das Lösungsblatt zu schreiben!!!