9. Übungsblatt zur Theoretischen Physik Ia (Mechanik)

Abgabe: Do. 15. Jul 2006 in der Vorlesung

Aufgabe 16 (6 Punkte): Poisson-Klammer

16.1 Berechnen Sie die Poisson-Klammern aus kartesischen Komponenten des Drehimpulses \underline{L} , i.e.

$${L_i, L_j}, \quad i, j = x, y, z.$$

16.2 Berechnen Sie die Poisson-Klammern aus kartesischen Komponenten des Impulses \underline{p} und Drehimpulses \underline{L} , i.e.

$${L_i, p_j}, \quad i, j = x, y, z.$$

Aufgabe 17 (4 Punkte): Noether-Theorem: helikoide Symmetrie

Gegeben sei ein Teilchen der Masse m mit dem Ortsvektor ${\bf r}$, das sich unter dem Einfluss des Potentials $V(r,\phi,z)$ (r, ϕ und z sind Zylinderkoordinaten) auf der Oberfläche eines unendlich ausgedehnten Kreiszylinders mit dem Radius R und der Symmetrieachse ${\bf e}_z$ bewegen möge. Das Potenzial $V(r,\phi,z)$ besitze die helikoide Symmetrie einer Schraubenlinie mit der Ganghöhe b:

$$V(r,\phi,z) = V(r,\phi+\alpha,z+\frac{b}{2\pi}\alpha) \qquad \text{für} \qquad \alpha \in \mathbb{R}$$

Bestimmen Sie mit Hilfe des Noether-Theorems die Erhaltungsgröße, die sich aus der helikoiden Symmetrie des Potentials $V(r,\phi,z)$ ergibt.

Bitte vergessen Sie nicht, Ihren Namen und Ihre Matrikelnummer auf das Lösungsblatt zu schreiben!!!