Prof. Dr. Andreas Knorr

Dipl.-Phys. Frank Milde

Dr. Kathy Lüdge Dr. Ermin Malić

Dr. Ermin Malić 29. Oktober 2008

3. Übungsblatt – Thermodynamik und Statistik WS08/09

Abgabe: Di. 11.11.2008 vor der Vorlesung im EW 203

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. **Abgabe in Dreiergruppen!** Bitte immer Namen und Matrikelnummer angeben.

Aufgabe 5 (5 Punkte): DICHTEMATRIXGLEICHUNGEN

In der VL wurde die zeitliche Dynamik der Dichtematrix behandelt.

- (a) Wiederholen Sie, ausgehend von der von *von Neumann*-Gleichung die Ableitung der Bewegungsgleichungen für die Besetzungswahrscheinlichkeiten ρ_{nn} und die Übergangswahrscheinlichkeitsamplituden ρ_{nm} ab. Machen Sie sich die Interpretation klar.
- (b) Betrachten Sie nun die Dichtematrixgleichungen eines Zweiniveausystem $(n, m \in \{1, 2\})$. Zeigen und interpretieren Sie folgende Eigenschaften der Dichtematrix: $\dot{\rho}_{11} = -\dot{\rho}_{22}$ und $\dot{\rho}_{12} = \dot{\rho}_{21}^*$.

Aufgabe 6 (5 Punkte): ABLEITUNG DER MASTERGLEICHUNG Ausgehend von der Dichtematrixgleichung,

$$i\hbar\partial_t\rho_{mn}=(\epsilon_m-\epsilon_n)\rho_{mn}+\sum_i(V_{mi}\rho_{in}-V_{in}\rho_{mi}),$$

soll die Ableitung der Mastergleichung

$$i\hbar\partial_t\rho_{nn} = -\sum_m p_{nm}\rho_{nn} + p_{nm}\rho_{mm},$$

(wie in der VL kurz skizziert) durchgeführt werden. Was sind die grundlegenden Unterschiede der beiden Gleichungen?

Aufgabe 7 (10 Punkte): Entropie und chemisches Potenital in der Grosskanonik Betrachten Sie ein Zwei-Niveau-System, das um E=0 symmetrisch ist. Die mittlerer Anzahl der Teilchen \overline{N} gehorche einer Fermiverteilung und sei beschränkt durch $0<\overline{N}<2$.

- (a) Skizzieren Sie das System. Wie lauten die Zustandsgrößen im großkanonischen Ensemble und in welchem Zusammenhang stehen das chemische Potential μ und \overline{N} ? (Welche Abhängigkeiten haben \overline{N} und μ ?)
- (b) Untersuchen Sie nun mit Hilfe einer Grenzwertbetrachtung das Verhalten von $\mu(T)$ für $T\longrightarrow \infty$ und $T\longrightarrow 0.$ (Bitte ausführliche Rechenschritte!) TIPP: $\mathit{Man l\"{o}se den \overline{N}}$ - μ - $\mathit{Zusammenhang nach }\mu$ auf.
- (c) Was passiert, wenn genau $\overline{N}=1$ ist?
- (d) Berechnen Sie desweiteren die Entropie S und interpretieren Sie das Ergebnis. Plotten Sie dazu die Fermifunktion und die Entropie in Abhängingkeit von der Energie. (z.B. für $\mu=0$ eV und kT=1 eV)