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1 Objective

The objective of the project has been the numerical and theoretical analysis of self-
organized spatiotemporal patterns in bistable and multistable semiconductor systems.
Our aim has been to influence, control and select such patterns. Various semiconductor
nanostructures like the resonant tunneling diode (DBRT = Double Barrier Resonant
Tunneling Diode), the superlattice, as well as the HHED (= Heterostructure Hot Electron
Diode), which have been studied by our group for a long time, have served as model
systems. The modelling of the nonlinear electronic transport was done on the level of
semiclassical electron density dynamics. This leads to reduced model equations, very
similar to those of reaction-diffusion systems, which are studied intensely in the framework
of other projects of Stb 555. Therefore our research also has a fundamental, methodical
character far beyond semiconductor nanostructures.

In the model systems of the resonant tunneling diode and the superlattice, the first step
was to analyse the complex and chaotic spatiotemporal oscillatory scenarios, which occur
through competing spatial and temporal instabilities. Patterns should then be selected
through a time delayed feedback loop of the output signal. Thereby, methods of time
delayed feedback control (Autosynchronization) which allow the stabilization of unstable

periodic orbits should be applied to spatiotemporal patterns.

2 Results

Our group has had a long-time experience in nonlinear and chaotic spatiotemporal pattern
formation in semiconductors [31, 32, 33, 34]. During the past proposal period, we mainly
dealt with the control of such patterns by time delayed feedback. Thereby we have
obtained numerous fundamental results of chaos control in spatially extended systems
with global coupling, which are independent of the specific microscopic properties of
the system. In particular we achieved to get a deeper understanding of how various
control schemes (local, global and periodically modulated) work. Moreover we managed
to obtain generic results for complex front dynamics. Three semiconductor systems served
as concrete models: (i) a simple generic reaction-diffusion system with global coupling for
transport in semiconductor heterostructures, like the HHED, (ii) the resonant tunneling
diode (DBRT) and (iii) the semiconductor superlattice. The two latter are of particular
interest with regard to applications in semiconductor physics. Besides collaborations
within the Sfb, from which joint publications arose, we also had important collaborations
with - guest scientist Dr. P. Rodin (Ioffe Physico-Technical Institute St. Petersburg),
Dr. W. Just (Queen Mary and Westfield College, London), Dr. N. Janson (Lancaster
University and Loughborough University, UK) and Dr. A. Balanov (Lancaster University,

UK, and Saratov State University, Russia) as well as other scientists (J. Socolar, USA,
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L. Bonilla, Madrid and others). Dr. Rodin’s stay has been at large supported by an
Alexander-von-Humboldt fellowship.
The work in progress is divided into three parts, according to the respective system under

investigation.

(i) Control of the spatiotemporal dynamics in a generic reaction-

diffusion system

Already in the first proposal period, we developed a generic activator-inhibitor reaction-
diffusion model, which originally was derived for vertical charge transport through semi-
conductor structures like the HHED and which is typical for a large class of spatially
extended systems in physics, chemistry and biology. Global coupling is achieved through
the connected electric load circuit. This model exhibits not only front dynamics but
complex and chaotic spatiotemporal scenarios as well [7]. During the report period we
have obtained surprising results and have made substantial progress managing to control
spatiotemporal patterns using time-delayed feedback methods (Pyragas-control [1, 40]).
In dimensionsless units, the model equations for the generic model have the form of
a reaction-diffusion system of activator-inhibitor type, with global coupling. We have
extended the model by adding the control forces F, and F, [15]:

dia(i,t) = (ufaﬁ — Ta+ Aa— KF,(7,1), (1)

Gpu(t) = aljo—(u—(a)] = KF,(). (2)

where a is the space dependent activator variable (electron density distribution in the
layer vertical to the transport direction) and w is the inhibitor variable (voltage across
the device). The first equation represents the continuity equation for electrons that flow
through the layer and the second equation is the Kirchhoff-equation for the total current
~ Jo, which causes a global coupling through the voltage drop across the load resistance.
The mean spatial charge density distribution (a) enters into the current and represents the
global coupling. «, jo and T" are system parameters, which represent the time scale, the
external control parameter or a parameter determining the bistability regime, respectively.
The spatial variable in the layer ¥ can be one- or two-dimensional depending on the
problem. In the following we consider the one-dimensional case. The control forces F,
and F,, each of which is multiplied by a control amplitude K, can be chosen arbitrarily.

First let K = 0 (no control). Complex and chaotic behaviour is expected in a parame-
ter range for which, at the same time, conditions for both a spatial instability (current
filament) and a temporal one (Hopf bifurcation) are satisfied, as we have shown in the one-
dimensional case [7]. The question arises under which circumstances similar behaviour for

systems of two spatial dimensions is possible. In collaboration with guest scientist W. Just
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Figure 1: Control regimes of the time-delayed feedback in the K — R plane for the generic
HHED model with (a) diagonal and (b) local control without inhibitor control. Here
* means successful and - non successful control. The solid lines denote the analytical

solution for the boundaries of the control regime according to (5). See [15]

(London) as well as with project B6 we managed to show, using an amplitude expansion
of the supercritical codimension-two-bifurcation, that one should not in general expect a
coexistence of Turing- and Hopf instabilities in two dimensions in a (through a second
diffusive coupling) locally coupled system unless the system size of the two directions is
so small that a quasi-onedimensional dynamics arises. [10].

The generic structure of equations (1) and (2) is underlying for other projects as well. A
very interesting collaboration arose with project B4, in which an electrochemical model
for pattern formation in electrode surfaces was investigated: a detailed comparison to our
globally coupled reaction-diffusion model revealed astonishing similarities in the scenarios
of complex spatiotemporal dynamics [11]. Extending the globally coupled two-component
reaction-diffusion system by a third diffusive component, one can describe apart form
stationary, breathing or spiking current filaments, also moving filaments (or domains,
respectively) [27].

Now we consider the case K # 0 in one spatial dimension.The system parameters are
chosen such that for K = 0 chaotic spatiotemporal spiking arises. Our aim is to stabilize
an unstable periodic spatiotemporal orbit, which is characterized by the period 7 and
the Floquet exponents . Furthermore the control forces F, and F, should vanish for
successful control (noninvasive control).

This can be achieved using variants of time-delayed autosynchronization (Pyragas-control)
[1, 2, 3]. Our goal here was to extend this method to spatiotemporal patterns. As starting
point we use a delay feedback loop of the form F, = F,., F,, = Fyt (diagonal coupling),
with

Foc(z,t) = a(z,t) —alz,t —7) + RFoc(z,t — 7), (3)
Fu(t) = u(t)—u(t—7)+ RFx(t — 1), (4)
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Figure 2: (a) Floquet-left eigenmodes ¢,,(t) and ¢,(z,t) for the largest Floquet-exponents
of a periodic orbit, as well as the corresponding Floquet-right eigenmode (b) v, (t) and
o (z,t). See [14]

where R is a memory parameter. For the diagonal control the Floquet-exponent A of the

controlled orbit satisfies the exact implicit equation [4],

1—€_AT

As shown in Fig. 1(a) , the resulting control domain in the K-R plane is numerically
reproduced with high accuracy for the generic model [15]. The control regime is bounded
by a flip bifurcation for small K values, and a Hopf bifurcation for large K values. Now
it is interesting to examine how the control range deforms when applying other control
schemes. One example is local control without inhibitor control, which arises for F, = 0,
F, = Fioc. In Fig. 1(b) one can recognize that thereby new control boundaries arise. A
systematic comparison of different local and global control schemes has been performed
by collaboration with W. Just (London) and J. Socolar (Duke University, USA). There
we could show, for instance by calculating the Floquet spectra, that in Fig. 1(b) for large
R and K, the control regime is bounded by a subcritical flip bifurcation, and that for
global control the control regime gets even bigger if the inhibitor control is omitted.

For applications, particularly interesting are control schemes which work with the smallest
possible amplitude factor K. In this regard, a new control scheme which we developed in
collaboration with W. Just [14], has proven surprisingly efficient. For this control scheme,
the Floquet-left eigenmode ¢,/, and the, associated with the adjoint problem, Floquet-
right eigenmode v,/, are calculated for the largest Floquet-exponent of the orbit to be

stabilized. A concrete example of such modes is depicted in Fig. 2. The control forces are



chaos

'
'
'
'
'
'
'
RN
'
' [y
. ~
' [N DS
'
' |
'
' '
|

chaos ; < range of control---»

10 | | o diagonal coupling
— eigenmode coupling

01¢
0.01 }
0.001 |

0.0001 | i \ [
10° S | T
102 10 10°® 10° 0.0001 0.01 1

Figure 3: Comparison of Floquet-eigenmode control (solid line) and diagonal control
(dashed line). The spatiotemporal average € = (|a(z,t) —a(x,t — 7)| + |u(t) —u(t — 7)|)xs
versus the control amplitude is plotted K. See [14]

then constructed as follows:

Fu(t) = vu(t)s(t),  Fa(z,t) = Ya(z,1)s(t), (6)
mit s(t) = /0 o2 1) [a(x' t) —a(2!,t — 1) da’ + ¢y (¢) [u(t) —u(t —7)] (7)

By applying this control force to the generic model, we discovered that control works
even for extremely small K-values, i.e. the control threshold decreases by six orders of
magnitude, as demonstrated in Fig. 3 in comparison to diagonal control. Investigating
this phenomenon in more detail, we determined that a phase shift 0 of the controlled
orbit over the phase of the Floquet modes plays an important role which can be treated
by perturbation theory [14]. We also applied this new type of Floquet mode control
to the Rossler-Model [24]. In this low dimensional system we succeeded in analysing
the dependence of the minimal control amplitudes of the phase shift § far beyond the
perturbation theory Ansatz.

With a suitable expansion of the Floquet mode control in two unstable modes, we suc-
ceeded for the first time to place localized spatiotemporal patterns (spikes) aimed at a
chosen position of the system [14]. Whereas normally, stable or unstable spatiotemporal
spikes in a globally coupled reaction-diffusion system with Neumann boundary conditions

are pinned on the boundary of the system, we could stabilize the spikes for vanishing con-
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Figure 4: Schematic energy band structure of the resonant tunneling diode (DBRT). See
[25]

trol force, with tended Floquet mode control, in the centre of the system. This involves

the control of an unstable orbit on the repellor.

(ii) Transverse spatiotemporal dynamics in a resonant tunneling
diode

The schematic energy band structure of the resonant tunneling diode (DBRT) is shown
in Fig. 2. The electrons tunnel from the emitter contact through the left barrier into the
quantum well and from there through the right barrier to the collector. The dynamical
variables in this case are the space-dependent electron density a(z,t) in the quantum well
(activator), as well as the voltage applied to the tunneling diode u(t) (inhibitor) (each in
dimensionless units), where z is the transverse spatial coordinate vertical to the current
transport direction. Based on our previous work on transverse dynamics [6, 8], the next
task was the microscopic calculation of the tunneling currents J,,, and J.. [16]. Expanding
the model by adding control forces F,, F,, one obtains in appropriate units a system of

equations of the form

% = %(D(a)%)+f((1,U)—KFa(xat)7 (8)
= LUy u—r(i) - KR.) ©)

Here, the nonlinear function f(a,u) characterizes the difference between the inflow and
the ouflow of the tunneling currents J.,,, Je. and D(a) is an effective diffusion coefficient.
Equation (9) describes the global coupling of the system through an applied circuit with
a resistance r at an external voltage Up. € is a time scale parameter and (j) is the

spatially averaged current density. This reaction-diffusion system is structurally like the
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Figure 5: Chaotic spiking (a) and breathing (b) of the DBRT current density patterns.
For each, the spatiotemporal pattern of the electron density, the projection of the phase

portraits on the global current-voltage plane and the time series of the voltage U are

shown. Parameter: e = 16.5 (a) and € = 9.1 (b). See [37].



6 8 10 12 14 16 18 20
€

Figure 6: Bifurcation diagram of maxima and minima of the voltage U vs the timescale
parameter €. Thick dotted lines: spatially homogeneous solution, thick dashed lines:

periodic breathing, thick solid lines: periodic spiking. See [25]

one examined in (1), but in contrast to that one, leads to a Z-shaped current-voltage
characteristic rather than to an S-shaped one.

Without control, K = 0, we found transverse trigger fronts in the bistable regime [26],
stochastic pulse trains in the excitable regime [25] and breathing current filaments and
spatiotemporal spiking in the oscillatory regime [16].

Our research in collaboration with P. Rodin (St. Petersburg) showed that the dynamical
behaviour of the DBRT can be chaotic when an electric circuit acts on the device [37].
Formally this can be achieved by choosing a negative r in Eq. (9). Thus we could prove
both breathing and spiking chaotic behaviour as shown in Fig. 2.5. The complete bi-
furcation diagram in Fig. 2.6 shows a complex bifurcation scenario, which was further
examined in [25].

Now we switch on the control, i.e. K # 0 [25]. The aim here was to compare the effective-
ness of various control methods. Our starting point is the theoretically well understood
diagonal control F,, = Fyt, F, = Floe, where Fif and Fj,. are calculated similarly to (3) and
(4). As already done for the generic model in (i), we can numerically reproduce analytical
conditions for successful control also for the DBRT model (5) [25].

For local control without voltage feedback, i.e. F, = 0, F, = Flo., the control regime
deforms as in Fig. 7(a). Floquet diagrams are essential for the bifurcation analysis as
shown in Fig. 7(b). In this case it follows from the Floquet diagram, that the left boundary
of the control regime is associated with a flip bifurcation whereas the lower and right
boundary are each associated with Hopf bifurcations.

The most suitable control scheme for practical applications is a pure voltage feedback,
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Figure 7: Control of an unstable periodic orbit using a local control scheme without
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Figure 8: Like in Fig. 7, but with a pure voltage control. See [25].
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Figure 9: Schematic energy band structure of a superlattice.

F, = Fy, F, = 0, where the physically easily accessible voltage variable is used in the
control. We managed with this simple method to stabilize an unstable periodic spatiotem-
poral orbit for the DBRT. [25]. The control regime (cf. Fig.8(a)) is is in comparison to
diagonal control obviously smaller, which can also be seen in the corresponding Floquet
diagram (Fig.8). Further interesting control schemes arise by choosing a spatially averaged
control force F,(z,t) = (Floc(2', 1)) [25].

(iii) Pattern formation and selection in semiconductor superlat-

tices

Semiconductor superlattices consist of an alternating layer sequence of two different mate-
rials. At sufficient barrier thickness electrons are assumed to be localized in the individual
wells. The resulting schematic energy band structure is shown in Fig. 9. Furthermore it
is assumed, that electrons in one well are in local equilibrium with the majority of them
occupying the lowest energy level. Electrons can tunnel from the ground state of a well to
a free state of the next well, where a possible difference between the state energies can be
compensated by the electric field acting between neighbouring wells. The current density
Jm—mi1(Fim, Ny Mma1) from well m to m + 1 is thus a nonlinear function of the electric
field F},, between the two wells as well as of the electron densities n,, and n,,; in the in-
volved wells. For concrete microscopic calculations of 7, .,,+1 we have used the sequential
tunneling model which has been developed in our group, cf. review paper by A. Wacker
[17]. For the contact currents at the emitter jo_; and the collector jy_n+1 we simply
assume Ohmic boundary conditions, which are characterized by a contact conductivity o.
N is the number of quantum wells in the superlattice.

Therefore the following equations of motion for the electron densities arise:

M = Jm—lom — Jmoms1 furm=1,...N, (10)
ereo(Fn — Fue1) = e(ny,, — Np) firm=1,...N, (11)
N
Uo = =Y Fud, (12)
m=0

11
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Figure 10: Chaotic scenario of the dynamics of the electron densities in a superlattice for
various voltages (space-time plots). Light regions correspond to electron accumulation,

dark regions to electron depletion. See [18].

with electron charge e < 0, €, and ¢, the relative and absolute permittivities respectively,
Np the doping, Uy the external voltage and d the period of the superlattice. Eq. (12)
describes a global constraint due to the total voltage. The total current through the
superlattice is given by j = 3" jm—m1/(N + 1) [34].

Depending on the physical parameters (especially on o and Np) the system of equations
(10), (11) and (12) at a constant U, has either stationary or oscillatory spatially inho-
mogeneus solutions (field domains bounded by electron accumulation and depletion). In
the stationary case the system is in general multistable, i.e. for one value of the voltage
there are many stable branches, which differ for instance, in the resulting current. In col-
laboration with L. Bonilla (Madrid), the next question to be treated was which of these
branches would be selected by the system after an abrupt or continuous change of the
external voltage [9, 36]. At this point we determined that the final state of the system
can depend very sensitively on the difference between the initial and final voltage. This
property could then be used to select operating points. The majority of the partially
surprising effects could be explained by the fact that at the emitter, pairs of electron

accumulation and depletion fronts (dipole) were generated. Our theoretical predictions
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Figure 11: Bifurcation diagram of the collision positions (quantum well index) of accu-

mulation and depletion fronts for various voltage values U. See [18].

on switching dynamics between multistable states were later quantitatively confirmed by
experiments performed at the Paul-Drude-Institute in Berlin [5].

By closer investigations on the front generation process at the emitter, as well as of the
motion of the fronts inside the device, we successfully generated complex self-oscillations
like tripole modes [19]. It was shown that the front generation at the emitter depends
substantially on the contact conductivity ¢ and the total current j. In particular, chaotic
front dynamics in a non driven superlattice were proven for the first time [18]. A typical
bifurcation scenario is shown in the electron density plots in Fig. 10. We can see that with
increasing voltage the superlattice exhibits both periodic and chaotic behaviour. The full
bifurcation diagram (Fig. 2.11) exhibits an alternating sequence of chaotic and periodic
regions as well as a striking cobweb structure, whose center lies at Uy = 0.9V.

Our further objective was to reduce the front model to a simple elementary basis. In
collaboration with the group of U. Parlitz (Gottingen) we found a surprising analogy to a
tank model, which is normally used in a totally different context, for describing industrial
production processes [28]. Consider a system of a given number of tanks. A swithching
server fills one of the tanks and at the same time all nonempty tanks drain. The server
then switches to a new tank, as soon as it is empty, under the condition that the tank
which it is currently filling has reached the minimum filling height p,. The relation
between the inflow- and outflow rates is chosen such, that the total amount of the water
L;, stays constant. The filling heights of the tanks correspond to the length of the high-
field domain (in the superlattice system) between a depletion and an accumulation front
or between the first depletion front and the emitter for the tank that is actually being
filled. The switching of the server in the tank system coresponds to the generation of a

dipole front at the emitter in the superlattice system.
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Figure 12: Bifurcation scenario shown in the modified tent map in the inset. The param-
eters x1 and Ly, correspond to the front position and the applied voltage respectively. See
28].

For three tanks the resulting dynamics is described by a one dimensional piecewise linear
iterated map as in the inset of Fig. 12. This modified map has only one bifurcation
parameter Ly /p,. The corresponding bifurcation diagram in Fig. 12 agrees in detail
with the microscopically calculated bifurcation diagram in Fig. 11. In particular the
cobweb structure is reproduced in detail. We can therefore show that the front dynamics
in the superlattice can be explained on a very fundamental basis using iterated maps
[28]. Because the microscopic properties of the superlattice do not come up, it must be
assumed, that a similar reduction may also be possible for complex front systems with
global coupling in many other disciplines, and that our reduced model may describe a
universal bifurcation scenario.

From a technological point of view, oscillatory superlattices are interesting as GigaHertz-
generators. In collaboration with the experimental group of E. Schomburg and K. Renk
(Regensburg) we analyzed the high frequency impedance of the superlattices, as well
as the behaviour of the superlattices in a resonator under the influence of an external
AC voltage [20, 21, 38]. The front dynamics are controlled by a periodic AC voltage and
exhibits typical behaviour like Arnold tongues, devil’s staircase and phase synchronization.
Apart from that we discovered that applying a suitable external circuit with capacitive
and inductive elements to the superlattice, may change its oscillation mode in which front
motion is supressed (quenched mode) and which leads to an eigenfrequency more than
twice as big as the nominal frequency of the superlattice. In this context we developed
together with the Regensburg group concrete proposals for experimental realization of
electronic high frequency oscillators [22].

Furthermore, regarding applications of the superlattice as a high frequency oscillator, it

is also important to create a stable periodic output signal and suppress potential chaotic
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Figure 13: Successful stabilization of a chaotic front pattern (a) applying time-delayed

feedback between voltage and current (b). See [29]

oscillations. With that in mind we investigated the chaotic front dynamics under various
feedback schemes. We could show for the first time that a control scheme with global
time-delayed feedback, simple to realize, is successful. [29, 30]. For this purpose we
substitute in (12) Uy by Uy + U.(t), with a control voltage

Uty = —K(J(t)—J(t—7))+ RU(t — ), (13)
with
J(t) = aA / t j(theeE=dy (14)

where A is the cross section of the device and « is a damping constant. We have shown
that it is necessary to modify the conventional Pyragas method by a low-pass filter (14)
due to the discrete structure of the superlattice. Successful control using this method is

demonstrated in Fig. 13.
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