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1 Objective

The objective of the project has been the numerical and theoretical analysis of self-

organized spatiotemporal patterns in bistable and multistable semiconductor systems.

Our aim has been to influence, control and select such patterns. Various semiconductor

nanostructures like the resonant tunneling diode (DBRT = Double Barrier Resonant

Tunneling Diode), the superlattice, as well as the HHED (= Heterostructure Hot Electron

Diode), which have been studied by our group for a long time, have served as model

systems. The modelling of the nonlinear electronic transport was done on the level of

semiclassical electron density dynamics. This leads to reduced model equations, very

similar to those of reaction-diffusion systems, which are studied intensely in the framework

of other projects of Sfb 555. Therefore our research also has a fundamental, methodical

character far beyond semiconductor nanostructures.

In the model systems of the resonant tunneling diode and the superlattice, the first step

was to analyse the complex and chaotic spatiotemporal oscillatory scenarios, which occur

through competing spatial and temporal instabilities. Patterns should then be selected

through a time delayed feedback loop of the output signal. Thereby, methods of time

delayed feedback control (Autosynchronization) which allow the stabilization of unstable

periodic orbits should be applied to spatiotemporal patterns.

2 Results

Our group has had a long-time experience in nonlinear and chaotic spatiotemporal pattern

formation in semiconductors [31, 32, 33, 34]. During the past proposal period, we mainly

dealt with the control of such patterns by time delayed feedback. Thereby we have

obtained numerous fundamental results of chaos control in spatially extended systems

with global coupling, which are independent of the specific microscopic properties of

the system. In particular we achieved to get a deeper understanding of how various

control schemes (local, global and periodically modulated) work. Moreover we managed

to obtain generic results for complex front dynamics. Three semiconductor systems served

as concrete models: (i) a simple generic reaction-diffusion system with global coupling for

transport in semiconductor heterostructures, like the HHED, (ii) the resonant tunneling

diode (DBRT) and (iii) the semiconductor superlattice. The two latter are of particular

interest with regard to applications in semiconductor physics. Besides collaborations

within the Sfb, from which joint publications arose, we also had important collaborations

with - guest scientist Dr. P. Rodin (Ioffe Physico-Technical Institute St. Petersburg),

Dr. W. Just (Queen Mary and Westfield College, London), Dr. N. Janson (Lancaster

University and Loughborough University, UK) and Dr. A. Balanov (Lancaster University,

UK, and Saratov State University, Russia) as well as other scientists (J. Socolar, USA,
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L. Bonilla, Madrid and others). Dr. Rodin’s stay has been at large supported by an

Alexander-von-Humboldt fellowship.

The work in progress is divided into three parts, according to the respective system under

investigation.

(i) Control of the spatiotemporal dynamics in a generic reaction-

diffusion system

Already in the first proposal period, we developed a generic activator-inhibitor reaction-

diffusion model, which originally was derived for vertical charge transport through semi-

conductor structures like the HHED and which is typical for a large class of spatially

extended systems in physics, chemistry and biology. Global coupling is achieved through

the connected electric load circuit. This model exhibits not only front dynamics but

complex and chaotic spatiotemporal scenarios as well [7]. During the report period we

have obtained surprising results and have made substantial progress managing to control

spatiotemporal patterns using time-delayed feedback methods (Pyragas-control [1, 40]).

In dimensionsless units, the model equations for the generic model have the form of

a reaction-diffusion system of activator-inhibitor type, with global coupling. We have

extended the model by adding the control forces Fa and Fu [15]:

∂ta(~x, t) =
u− a

(u− a)2 + 1
− Ta+ ∆a−KFa(~x, t), (1)

∂tu(t) = α [j0 − (u− 〈a〉)] −KFu(t). (2)

where a is the space dependent activator variable (electron density distribution in the

layer vertical to the transport direction) and u is the inhibitor variable (voltage across

the device). The first equation represents the continuity equation for electrons that flow

through the layer and the second equation is the Kirchhoff-equation for the total current

∼ j0, which causes a global coupling through the voltage drop across the load resistance.

The mean spatial charge density distribution 〈a〉 enters into the current and represents the

global coupling. α, j0 and T are system parameters, which represent the time scale, the

external control parameter or a parameter determining the bistability regime, respectively.

The spatial variable in the layer ~x can be one- or two-dimensional depending on the

problem. In the following we consider the one-dimensional case. The control forces Fa

and Fu, each of which is multiplied by a control amplitude K, can be chosen arbitrarily.

First let K = 0 (no control). Complex and chaotic behaviour is expected in a parame-

ter range for which, at the same time, conditions for both a spatial instability (current

filament) and a temporal one (Hopf bifurcation) are satisfied, as we have shown in the one-

dimensional case [7]. The question arises under which circumstances similar behaviour for

systems of two spatial dimensions is possible. In collaboration with guest scientist W. Just

3



0 0.004 0.008
K

-0.6

-0.2

0.2

R

a) b)

0 0.004 0.008K

-0.6

-0.2

0.2

R

Figure 1: Control regimes of the time-delayed feedback in the K−R plane for the generic

HHED model with (a) diagonal and (b) local control without inhibitor control. Here

? means successful and · non successful control. The solid lines denote the analytical

solution for the boundaries of the control regime according to (5). See [15]

(London) as well as with project B6 we managed to show, using an amplitude expansion

of the supercritical codimension-two-bifurcation, that one should not in general expect a

coexistence of Turing- and Hopf instabilities in two dimensions in a (through a second

diffusive coupling) locally coupled system unless the system size of the two directions is

so small that a quasi-onedimensional dynamics arises. [10].

The generic structure of equations (1) and (2) is underlying for other projects as well. A

very interesting collaboration arose with project B4, in which an electrochemical model

for pattern formation in electrode surfaces was investigated: a detailed comparison to our

globally coupled reaction-diffusion model revealed astonishing similarities in the scenarios

of complex spatiotemporal dynamics [11]. Extending the globally coupled two-component

reaction-diffusion system by a third diffusive component, one can describe apart form

stationary, breathing or spiking current filaments, also moving filaments (or domains,

respectively) [27].

Now we consider the case K 6= 0 in one spatial dimension.The system parameters are

chosen such that for K = 0 chaotic spatiotemporal spiking arises. Our aim is to stabilize

an unstable periodic spatiotemporal orbit, which is characterized by the period τ and

the Floquet exponents λ. Furthermore the control forces Fa and Fu should vanish for

successful control (noninvasive control).

This can be achieved using variants of time-delayed autosynchronization (Pyragas-control)

[1, 2, 3]. Our goal here was to extend this method to spatiotemporal patterns. As starting

point we use a delay feedback loop of the form Fa = Floc, Fu = Fvf (diagonal coupling),

with

Floc(x, t) = a(x, t) − a(x, t− τ) +RFloc(x, t− τ), (3)

Fvf(t) = u(t) − u(t− τ) +RFvf(t− τ), (4)
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Figure 2: (a) Floquet-left eigenmodes φu(t) and φa(x, t) for the largest Floquet-exponents

of a periodic orbit, as well as the corresponding Floquet-right eigenmode (b) ψu(t) and

ψa(x, t). See [14]

where R is a memory parameter. For the diagonal control the Floquet-exponent Λ of the

controlled orbit satisfies the exact implicit equation [4],

Λ +K
1 − e−Λτ

1 − Re−Λτ
= λ. (5)

As shown in Fig. 1(a) , the resulting control domain in the K-R plane is numerically

reproduced with high accuracy for the generic model [15]. The control regime is bounded

by a flip bifurcation for small K values, and a Hopf bifurcation for large K values. Now

it is interesting to examine how the control range deforms when applying other control

schemes. One example is local control without inhibitor control, which arises for Fu = 0,

Fa = Floc. In Fig. 1(b) one can recognize that thereby new control boundaries arise. A

systematic comparison of different local and global control schemes has been performed

by collaboration with W. Just (London) and J. Socolar (Duke University, USA). There

we could show, for instance by calculating the Floquet spectra, that in Fig. 1(b) for large

R and K, the control regime is bounded by a subcritical flip bifurcation, and that for

global control the control regime gets even bigger if the inhibitor control is omitted.

For applications, particularly interesting are control schemes which work with the smallest

possible amplitude factor K. In this regard, a new control scheme which we developed in

collaboration with W. Just [14], has proven surprisingly efficient. For this control scheme,

the Floquet-left eigenmode φu/a and the, associated with the adjoint problem, Floquet-

right eigenmode ψu/a are calculated for the largest Floquet-exponent of the orbit to be

stabilized. A concrete example of such modes is depicted in Fig. 2. The control forces are
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then constructed as follows:

Fu(t) = ψu(t)s(t), Fa(x, t) = ψa(x, t)s(t), (6)

mit s(t) =

∫ L

0

φa(x
′, t) [a(x′, t) − a(x′, t− τ)] dx′ + φu(t) [u(t) − u(t− τ)] (7)

By applying this control force to the generic model, we discovered that control works

even for extremely small K-values, i.e. the control threshold decreases by six orders of

magnitude, as demonstrated in Fig. 3 in comparison to diagonal control. Investigating

this phenomenon in more detail, we determined that a phase shift δ of the controlled

orbit over the phase of the Floquet modes plays an important role which can be treated

by perturbation theory [14]. We also applied this new type of Floquet mode control

to the Rössler-Model [24]. In this low dimensional system we succeeded in analysing

the dependence of the minimal control amplitudes of the phase shift δ far beyond the

perturbation theory Ansatz.

With a suitable expansion of the Floquet mode control in two unstable modes, we suc-

ceeded for the first time to place localized spatiotemporal patterns (spikes) aimed at a

chosen position of the system [14]. Whereas normally, stable or unstable spatiotemporal

spikes in a globally coupled reaction-diffusion system with Neumann boundary conditions

are pinned on the boundary of the system, we could stabilize the spikes for vanishing con-

6



E

0

-u

x0

d

u
2

-
Jwc

Jew

z

ηe

d
rB

a

γ

Figure 4: Schematic energy band structure of the resonant tunneling diode (DBRT). See

[25]

trol force, with tended Floquet mode control, in the centre of the system. This involves

the control of an unstable orbit on the repellor.

(ii) Transverse spatiotemporal dynamics in a resonant tunneling

diode

The schematic energy band structure of the resonant tunneling diode (DBRT) is shown

in Fig. 2. The electrons tunnel from the emitter contact through the left barrier into the

quantum well and from there through the right barrier to the collector. The dynamical

variables in this case are the space-dependent electron density a(x, t) in the quantum well

(activator), as well as the voltage applied to the tunneling diode u(t) (inhibitor) (each in

dimensionless units), where x is the transverse spatial coordinate vertical to the current

transport direction. Based on our previous work on transverse dynamics [6, 8], the next

task was the microscopic calculation of the tunneling currents Jew and Jec [16]. Expanding

the model by adding control forces Fa, Fu, one obtains in appropriate units a system of

equations of the form

∂a

∂t
=

∂

∂x

(

D(a)
∂a

∂x

)

+ f(a, u) −KFa(x, t), (8)

du

dt
=

1

ε
(U0 − u− r〈j〉) −KFu(t). (9)

Here, the nonlinear function f(a, u) characterizes the difference between the inflow and

the ouflow of the tunneling currents Jew, Jec and D(a) is an effective diffusion coefficient.

Equation (9) describes the global coupling of the system through an applied circuit with

a resistance r at an external voltage U0. ε is a time scale parameter and 〈j〉 is the

spatially averaged current density. This reaction-diffusion system is structurally like the
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Figure 5: Chaotic spiking (a) and breathing (b) of the DBRT current density patterns.

For each, the spatiotemporal pattern of the electron density, the projection of the phase

portraits on the global current-voltage plane and the time series of the voltage U are

shown. Parameter: ε = 16.5 (a) and ε = 9.1 (b). See [37].
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Figure 6: Bifurcation diagram of maxima and minima of the voltage U vs the timescale

parameter ε. Thick dotted lines: spatially homogeneous solution, thick dashed lines:

periodic breathing, thick solid lines: periodic spiking. See [25]

one examined in (1), but in contrast to that one, leads to a Z-shaped current-voltage

characteristic rather than to an S-shaped one.

Without control, K = 0, we found transverse trigger fronts in the bistable regime [26],

stochastic pulse trains in the excitable regime [25] and breathing current filaments and

spatiotemporal spiking in the oscillatory regime [16].

Our research in collaboration with P. Rodin (St. Petersburg) showed that the dynamical

behaviour of the DBRT can be chaotic when an electric circuit acts on the device [37].

Formally this can be achieved by choosing a negative r in Eq. (9). Thus we could prove

both breathing and spiking chaotic behaviour as shown in Fig. 2.5. The complete bi-

furcation diagram in Fig. 2.6 shows a complex bifurcation scenario, which was further

examined in [25].

Now we switch on the control, i.e. K 6= 0 [25]. The aim here was to compare the effective-

ness of various control methods. Our starting point is the theoretically well understood

diagonal control Fu = Fvf, Fa = Floc, where Fvf and Floc are calculated similarly to (3) and

(4). As already done for the generic model in (i), we can numerically reproduce analytical

conditions for successful control also for the DBRT model (5) [25].

For local control without voltage feedback, i.e. Fu = 0, Fa = Floc, the control regime

deforms as in Fig. 7(a). Floquet diagrams are essential for the bifurcation analysis as

shown in Fig. 7(b). In this case it follows from the Floquet diagram, that the left boundary

of the control regime is associated with a flip bifurcation whereas the lower and right

boundary are each associated with Hopf bifurcations.

The most suitable control scheme for practical applications is a pure voltage feedback,
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Figure 7: Control of an unstable periodic orbit using a local control scheme without

voltage feedback for ε = 9.1. (a) Control regime in the K–R plane. • means successful

control, · no control, solid lines: analytical results. See (5). (b) The largest real part Λ of

the Floquet spectrum vs K (R = −0.55). Dotted lines mean complex conjugate pairs of
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Figure 8: Like in Fig. 7, but with a pure voltage control. See [25].
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Fu = Fvf, Fa = 0, where the physically easily accessible voltage variable is used in the

control. We managed with this simple method to stabilize an unstable periodic spatiotem-

poral orbit for the DBRT. [25]. The control regime (cf. Fig.8(a)) is is in comparison to

diagonal control obviously smaller, which can also be seen in the corresponding Floquet

diagram (Fig.8). Further interesting control schemes arise by choosing a spatially averaged

control force Fa(x, t) = 〈Floc(x
′, t)〉x′ [25].

(iii) Pattern formation and selection in semiconductor superlat-

tices

Semiconductor superlattices consist of an alternating layer sequence of two different mate-

rials. At sufficient barrier thickness electrons are assumed to be localized in the individual

wells. The resulting schematic energy band structure is shown in Fig. 9. Furthermore it

is assumed, that electrons in one well are in local equilibrium with the majority of them

occupying the lowest energy level. Electrons can tunnel from the ground state of a well to

a free state of the next well, where a possible difference between the state energies can be

compensated by the electric field acting between neighbouring wells. The current density

jm→m+1(Fm, nm, nm+1) from well m to m + 1 is thus a nonlinear function of the electric

field Fm between the two wells as well as of the electron densities nm and nm+1 in the in-

volved wells. For concrete microscopic calculations of jm→m+1 we have used the sequential

tunneling model which has been developed in our group, cf. review paper by A. Wacker

[17]. For the contact currents at the emitter j0→1 and the collector jN→N+1 we simply

assume Ohmic boundary conditions, which are characterized by a contact conductivity σ.

N is the number of quantum wells in the superlattice.

Therefore the following equations of motion for the electron densities arise:

eṅm = jm−1→m − jm→m+1 für m = 1, . . . N, (10)

εrε0(Fm − Fm−1) = e(nm −ND) für m = 1, . . . N, (11)

U0 = −

N
∑

m=0

Fmd, (12)
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with electron charge e < 0, εr and ε0 the relative and absolute permittivities respectively,

ND the doping, U0 the external voltage and d the period of the superlattice. Eq. (12)

describes a global constraint due to the total voltage. The total current through the

superlattice is given by j =
∑

m jm→m+1/(N + 1) [34].

Depending on the physical parameters (especially on σ and ND) the system of equations

(10), (11) and (12) at a constant U0 has either stationary or oscillatory spatially inho-

mogeneus solutions (field domains bounded by electron accumulation and depletion). In

the stationary case the system is in general multistable, i.e. for one value of the voltage

there are many stable branches, which differ for instance, in the resulting current. In col-

laboration with L. Bonilla (Madrid), the next question to be treated was which of these

branches would be selected by the system after an abrupt or continuous change of the

external voltage [9, 36]. At this point we determined that the final state of the system

can depend very sensitively on the difference between the initial and final voltage. This

property could then be used to select operating points. The majority of the partially

surprising effects could be explained by the fact that at the emitter, pairs of electron

accumulation and depletion fronts (dipole) were generated. Our theoretical predictions
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Figure 11: Bifurcation diagram of the collision positions (quantum well index) of accu-

mulation and depletion fronts for various voltage values U . See [18].

on switching dynamics between multistable states were later quantitatively confirmed by

experiments performed at the Paul-Drude-Institute in Berlin [5].

By closer investigations on the front generation process at the emitter, as well as of the

motion of the fronts inside the device, we successfully generated complex self-oscillations

like tripole modes [19]. It was shown that the front generation at the emitter depends

substantially on the contact conductivity σ and the total current j. In particular, chaotic

front dynamics in a non driven superlattice were proven for the first time [18]. A typical

bifurcation scenario is shown in the electron density plots in Fig. 10. We can see that with

increasing voltage the superlattice exhibits both periodic and chaotic behaviour. The full

bifurcation diagram (Fig. 2.11) exhibits an alternating sequence of chaotic and periodic

regions as well as a striking cobweb structure, whose center lies at U0 = 0.9V .

Our further objective was to reduce the front model to a simple elementary basis. In

collaboration with the group of U. Parlitz (Göttingen) we found a surprising analogy to a

tank model, which is normally used in a totally different context, for describing industrial

production processes [28]. Consider a system of a given number of tanks. A swithching

server fills one of the tanks and at the same time all nonempty tanks drain. The server

then switches to a new tank, as soon as it is empty, under the condition that the tank

which it is currently filling has reached the minimum filling height ph. The relation

between the inflow- and outflow rates is chosen such, that the total amount of the water

Lh stays constant. The filling heights of the tanks correspond to the length of the high-

field domain (in the superlattice system) between a depletion and an accumulation front

or between the first depletion front and the emitter for the tank that is actually being

filled. The switching of the server in the tank system coresponds to the generation of a

dipole front at the emitter in the superlattice system.
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For three tanks the resulting dynamics is described by a one dimensional piecewise linear

iterated map as in the inset of Fig. 12. This modified map has only one bifurcation

parameter Lh/ph. The corresponding bifurcation diagram in Fig. 12 agrees in detail

with the microscopically calculated bifurcation diagram in Fig. 11. In particular the

cobweb structure is reproduced in detail. We can therefore show that the front dynamics

in the superlattice can be explained on a very fundamental basis using iterated maps

[28]. Because the microscopic properties of the superlattice do not come up, it must be

assumed, that a similar reduction may also be possible for complex front systems with

global coupling in many other disciplines, and that our reduced model may describe a

universal bifurcation scenario.

From a technological point of view, oscillatory superlattices are interesting as GigaHertz-

generators. In collaboration with the experimental group of E. Schomburg and K. Renk

(Regensburg) we analyzed the high frequency impedance of the superlattices, as well

as the behaviour of the superlattices in a resonator under the influence of an external

AC voltage [20, 21, 38]. The front dynamics are controlled by a periodic AC voltage and

exhibits typical behaviour like Arnold tongues, devil’s staircase and phase synchronization.

Apart from that we discovered that applying a suitable external circuit with capacitive

and inductive elements to the superlattice, may change its oscillation mode in which front

motion is supressed (quenched mode) and which leads to an eigenfrequency more than

twice as big as the nominal frequency of the superlattice. In this context we developed

together with the Regensburg group concrete proposals for experimental realization of

electronic high frequency oscillators [22].

Furthermore, regarding applications of the superlattice as a high frequency oscillator, it

is also important to create a stable periodic output signal and suppress potential chaotic
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oscillations. With that in mind we investigated the chaotic front dynamics under various

feedback schemes. We could show for the first time that a control scheme with global

time-delayed feedback, simple to realize, is successful. [29, 30]. For this purpose we

substitute in (12) U0 by U0 + Uc(t), with a control voltage

Uc(t) = −K
(

J(t) − J(t− τ)
)

+RUc(t− τ), (13)

with

J(t) = αA

∫ t

0

j(t′)e−α(t−t′)dt′, (14)

where A is the cross section of the device and α is a damping constant. We have shown

that it is necessary to modify the conventional Pyragas method by a low-pass filter (14)

due to the discrete structure of the superlattice. Successful control using this method is

demonstrated in Fig. 13.
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Rückkopplung mit räumlichen
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switching in semiconductor superlattices, Phys. Rev. E 63, 066207 (2001).

[10] W. Just, M. Bose, S. Bose, H. Engel, and E. Schöll: Spatio-temporal dynamics near a
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superlattices: Dynamic scenarios of multistable switching , in Proc. 25th International

Conference on the Physics of Semiconductors, edited by N. Miura and T. Ando

(Springer, Berlin, 2001), p. 801.

[37] J. Unkelbach, A. Amann, P. Rodin, and E. Schöll: From bistability to spatio-temporal
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