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ABSTRACT

We study patterns of partial synchronization in a network of FitzHugh–Nagumo oscillators with empirical structural connectivity measured
in human subjects. We report the spontaneous occurrence of synchronization phenomena that closely resemble the ones seen during epileptic
seizures in humans. In order to obtain deeper insights into the interplay between dynamics and network topology, we perform long-term sim-
ulations of oscillatory dynamics on different paradigmatic network structures: random networks, regular nonlocally coupled ring networks,
ring networks with fractal connectivities, and small-world networks with various rewiring probability. Among these networks, a small-world
network with intermediate rewiring probability best mimics the findings achieved with the simulations using the empirical structural con-
nectivity. For the other network topologies, either no spontaneously occurring epileptic-seizure-related synchronization phenomena can be
observed in the simulated dynamics, or the overall degree of synchronization remains high throughout the simulation. This indicates that
a topology with some balance between regularity and randomness favors the self-initiation and self-termination of episodes of seizure-like
strong synchronization.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021420

Synchronization is a widespread natural phenomenon occurring
in networks of oscillators.1,2 In the human brain, synchro-
nization is essential for normal physiological functioning3 but
it is also strongly related to seizures, which are the cardinal
symptom of epilepsy.4–6 This neurological disease is currently
understood as a network disease,7 and a better understand-
ing of the role of the epileptic network’s topology in seizure
generation and termination is highly desirable. Using complex
networks of coupled oscillators, we simulate synchronization
phenomena observed in the human brain. We employ coupled
oscillators of the FitzHugh–Nagumo type since these are a

paradigmatic model for neural dynamics.8 With an empirical
structural brain connectivity of human subjects as a coupling
matrix, we observe spontaneously occurring periods of strong
synchronization, which resemble the ones seen during epilep-
tic seizures. For a better insight into the network properties
giving rise to such pathology-related events, we simulate the
dynamics on various paradigmatic network topologies: we ran-
domly rewire links in a small-world fashion, consider fractal
connectivities, and exchange equal weights with empirical weights
from diffusion-weighted magnetic resonance imaging. More-
over, we explore how global aspects of the networks—as assessed
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with the average clustering coefficient and the mean shortest
path length—impact the dynamics of the epileptic-seizure-related
synchronization phenomena. In order to strengthen our findings,
we compare our model simulations to electroencephalographic
(EEG) recordings of epileptic seizures. A better knowledge of the
interplay between dynamics and network properties leading to
complex synchronization phenomena is essential for understand-
ing seizure dynamics.

I. INTRODUCTION

Epilepsy is a neurological disorder that affects almost 70 × 106

people worldwide.9 People with epilepsy experience seizures charac-
terized by a “transient occurrence of signs and/or symptoms due to
abnormal excessive or synchronous neuronal activity in the brain.”10

Generalized seizures involve almost the entire brain,11 while focal
seizures are confined to a circumscribed brain area. Generalized
seizures are usually classified by symptoms such as muscle contrac-
tions, shaking of the limbs, muscle spasms, or rapid loss of muscle
activity. There is only one kind of generalized seizure in which the
gross muscular activity is unaffected, making it especially accessible
to measurement using EEG by avoiding the problem of movement
artifacts. Such seizures are called absence seizures. If a person expe-
riences an absence seizure while standing, he or she does not fall
over. Instead, the person may lose consciousness, stop any behavior
engaged in before the seizure, keep still, may blink his or her eyes,
and pick up on the behavior right after the seizure terminates. The
person may have no memory of the seizure and usually is unaware
that it happened due to the possible loss of consciousness during the
seizure.

In epileptology, the development of the concept of an epilep-
tic network12–14 received a strong impetus from network-theoretical
concepts. An epileptic network comprises anatomically, and more
importantly, functionally connected cortical and subcortical brain
structures and regions. Seizures may emerge from, may spread
via, and may be terminated by network constituents that gener-
ate and sustain normal, physiological brain dynamics during the
seizure-free interval.12

In order to advance the understanding of the epileptic net-
work and its temporal evolution, research into seizure dynamics
may benefit from research on the synchronization in complex
networks. This topic is of great scientific interest due to its rele-
vance for understanding synchronization phenomena in nature and
technology.1,2,15–17 From this research, it is well known that the sys-
tem’s ability to synchronize depends on the local dynamics of the
oscillators, their coupling, and their structural connectivity. In this
article, we focus on the latter property and study the impact of the
network structure on the emergence of seizures. To gain a better
understanding of the dynamics of epileptic seizures, we are inter-
ested in synchronization events in neural networks which are (i)
generalized (i.e., affect the entire system), (ii) have a long duration
compared to the system dynamics, and (iii) are self-initiated and
self-terminated. Notwithstanding the high relevance of internal and
external stimuli to play a critical role in triggering seizures,18–20 we
here aim at identifying network structures that provoke such events.

Previous studies have identified characteristic changes in
various properties of networks related to generalized seizures21,22 and
have highlighted the critical role of the coupling topology for their
dynamics.23–29 For networks of neurons, modeled with the paradig-
matic FitzHugh–Nagumo neuronal dynamics, epileptic-seizure-like
dynamics has been investigated in the context of two topologies:
an empirical structural brain connectivity (derived from diffusion-
weighted magnetic resonance imaging) and a mathematically con-
structed network with modular fractal connectivity.30 Furthermore,
the role of partial synchronization phenomena31–35 for mechanisms
of seizure initiation36 and termination37 has been explored.

The purpose of this work is to elucidate the role of the neu-
ral network coupling structure in causing epileptic-seizure-related
synchronization phenomena. For better readability, we use the term
seizure for epileptic-seizure-related synchronization phenomena in
the following. To this end, we compare various network topologies
that are relevant in the neurosciences. Our goal is to conceive how
the structure of a network facilitates events of spontaneous and pro-
longed synchronization in systems that are desynchronized most of
the time.

The paper is organized as follows: In Sec. II, we introduce a
dynamical model that consists of coupled FitzHugh–Nagumo oscil-
lators. In Sec. III, we present the results of our simulations for dif-
ferent network topologies that shed light on the role of the coupling
structure for spontaneous synchronization. Eventually, in Sec. IV,
we compare our simulated seizures to those seen in electroen-
cephalographic (EEG) recordings of generalized epileptic seizures in
humans.

II. THE MODEL

We use the FitzHugh–Nagumo (FHN) model, which is a
paradigmatic model for neuronal spiking.8,38,39 Note that while the
FitzHugh–Nagumo model was originally developed as a simplified
model of a single neuron, it is also often used as a generic model for
excitable media on a coarse-grained level.40,41 In this spirit, we model
90 regions of the human brain labeled by the Automated Anatom-
ical Labeling (AAL) atlas42 by a network of N = 90 nodes, where
each brain region is described by an FHN oscillator involving an
activator variable (membrane potential) uk and an inhibitor variable
(recovery variable) vk. We arrange the brain regions k = 1, 2, . . . , 90
such that k ∈ NL = {1, . . . , 45} corresponds to the left, and k ∈

NR = {46, . . . , 90} corresponds to the right brain hemisphere. The
dynamics of variables uk and vk is then given by

εu̇k = uk −
u3

k

3
− vk + σ

N
∑

j=1

Akj

[

Buu(uj − uk) + Buv(vj − vk)
]

,

(1)

v̇k = uk + a + σ

N
∑

j=1

Akj

[

Bvu(uj − uk) + Bvv(vj − vk)
]

,

where k = 1, . . . , N and ε = 0.05 describes the timescale separation
between the fast activator variable uk and the slow inhibitor variable
vk.38 Depending on the threshold parameter a, each uncoupled node
may exhibit excitable behavior (|a| > 1) or self-sustained limit cycle
oscillations (|a| < 1), separated by a Hopf bifurcation at |a| = 1. We
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use the FHN model in the oscillatory regime and fix the thresh-
old parameter at a = 0.5 sufficiently far from the Hopf bifurcation
point. The matrix elements Akj of the weighted adjacency matrix of
size 90 × 90 determine the network topology. The overall coupling
is determined by the coupling strength σ . The interaction scheme
between activator and inhibitor variables is characterized by the
2 × 2 matrix B. Employing a rotational matrix B is a simple way to
parameterize the possibility of either diagonal coupling (Buu, Bvv) or
activator-inhibitor cross-coupling (Buv, Bvu) by a single parameter ϕ,

B =

(

Buu Buv

Bvu Bvv

)

=

(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)

. (2)

In the following, we choose ϕ = π

2 − 0.1, causing dominant
activator-inhibitor cross-coupling,43 which is a commonly employed
mechanism in biology.44 In the neurosciences, the microscopic
coupling schemes are very complex,45 but in our coarse-grained
macroscopic description of a whole brain area by a pair of activa-
tor and inhibitor variables, activator-inhibitor coupling is a natural
extension of pure activator–activator coupling. Mathematically, this
means that signals of other neuronal areas are coupled via a cou-
pling phase, which introduces a phase lag or time delay. The subtle
interplay of excitatory and inhibitory interaction enables intermit-
tent periods of either high or low synchronization. This is typical
of the critical state at the edge of different dynamical regimes in
which the brain operates.46 In fact, in our simulations we have not
found epileptic-seizure-related partial synchronization phenomena
if we use pure activator–activator coupling. The coupling phase ϕ

is similar to the phase-lag parameter of the paradigmatic Kuramoto
phase oscillator model, which is widely used to describe synchro-
nization phenomena in coupled oscillator networks. The coupling
phase has been shown to be crucial for the modeling of nontrivial
partial synchronization patterns in the Kuramoto model47 and in the
FHN model.43

We use the global Kuramoto order parameter r to measure the
degree of synchronization of a network. It is calculated as

r(t) =
1

N

∣

∣

∣

∣

∣

N
∑

k=1

exp[iφk(t)]

∣

∣

∣

∣

∣

, (3)

utilizing an abstract dynamical phase φk obtained from the standard
geometric phase φ̃k(t) = arctan(vk/uk) by a transformation, which
yields the constant phase velocity φ̇k. For an uncoupled FHN oscil-
lator, the function t(φ̃k) is calculated numerically, assigning a value
of time 0 < t(φ̃k) < T for every value of the geometric phase, where
T is the oscillation period. The dynamical phase is then defined
as φk = 2π t(φ̃k)/T, which yields φ̇k = const. Uncoupled oscillators
have thus a constant phase velocity with respect to the dynam-
ical phase. If the geometrical phase φ̃k(t) were used instead, the
slow–fast time scales of inhibitor and activator would result in a
strong inhomogeneous phase velocity, which would cause strong
fluctuations of the order parameter r. Only by using the dynamical
phase φk, these fluctuations are suppressed, and a change in r indeed
reflects a change in the degree of synchronization. The Kuramoto
order parameter may vary between 0 and 1, where r = 1 corre-
sponds to complete phase synchronization, small values characterize

desynchronized states, and intermediate values correspond to partial
synchronization.

III. SIMULATION OF SPONTANEOUS

EPILEPTIC-SEIZURE-RELATED SYNCHRONIZATION

PHENOMENA

In the following, we present simulations of the dynamics
described by Eq. (1) for various network topologies Akj.

A. Empirical brain network

First, we consider an empirical structural brain network. The
brain network was obtained from diffusion-weighted magnetic reso-
nance imaging data measured in healthy human subjects. For details
regarding the experimental setup and data processing, see Ref. 48,
for previous utilization of the structural network to analyze partial
synchronization phenomena, see Refs. 30 and 49, and for a short
description of the Diffusion Tensor Imaging (DTI) data acquisition,
we refer to the Appendix. The brains were segregated into 90 areas
according to the Automated Anatomical Labeling (AAL) atlas.42 The
90 areas correspond to the 90 nodes of our network and the connect-
ing white-matter fibers between the areas correspond to the links.
The anatomical names of the brain areas for each index k are given
in Table SII of the supplementary material. To eliminate individ-
ual variation, the matrices of 20 subjects were averaged, giving rise
to the topology of Figs. 1(a) and 1(b). In the present study, brain
areas k ∈ NL = {1, 2, . . . , 45} correspond to the left hemisphere and
k ∈ NR = {46, . . . , 90} to the right hemisphere as in Ref. 49. This
contrasts the typical AAL indexing in which uneven k are left and
even k are right hemispheric areas. Using our labeling, the structure
of the brain hemispheres can be easily distinguished: In the adja-
cency matrix in Fig. 1(a), the connections within one hemisphere
are much stronger than the connections between both hemispheres.
In Fig. 1(b), the network topology is schematically represented on a
ring, where the left and right hemispheres correspond to the left and
right half-circle, respectively. Most links are intra-hemispheric, and
only very few inter-hemispheric connections can be seen. Note that
the width of the links in Fig. 1(b) is proportional to their weight.

Following previous studies on synchronization pheno-
mena,30,43,49 we fix the parameters a = 0.5, ε = 0.05, and ϕ = π

2
− 0.1 in our simulations for all topologies. The coupling strength
σ is chosen such that it is as high as possible while still avoiding full
synchronization for long simulations (≈ 10 000 time units). For the
empirical connectivities, we choose σ = 0.6. In order to compare
our simulations with real data (EEG recordings of absence seizures;
see Sec. IV), we transform the dimensionless time units of the FHN
oscillator model to real time units by comparing the FHN oscillation
period of a single FHN oscillator T = 2.56 to the dominant fre-
quency of an absence seizure at about f = 3 Hz.11,50–52 Therefore, the
simulation time is converted to real time by 1 s = 2.56 × 3 = 7.68
simulation time units.

The results of the simulation are shown in Figs. 1(c)–1(e). In
panels (c) and (d), we show the global Kuramoto order parameter
r(t), which measures the degree of synchronization. Panels (c) and
(d) also reveal periods of very high and of very low synchronization
of the system as a function of time, varying in a range from 0 to
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FIG. 1. Epileptic-seizure-like synchronization phenomena in a FitzHugh–
Nagumo network with empirical connectivity. (a) Weighted adjacency matrix
obtained from empirical human diffusion tensor imaging (DTI), averaged over 20
subjects.48 Indices k, j = 1, . . . , 45, and k, j = 46, . . . , 90 label the left and right
hemispheres, respectively. The dense intra-hemispheric connectivities (first and
second diagonal blocks) and the sparse inter-hemispheric connectivities can be
clearly seen. (b) Schematic plot of the network structure. The left (right) semicir-
cle corresponds to the left (right) hemisphere, the nodes are numbered clockwise
sequentially 1, . . . , 90 starting from the bottom of the circle. The link thickness
is proportional to the weights Akj . (c) Global Kuramoto order parameter r vs time
(time interval 1 h). It fluctuates strongly in the range from 0 to almost 1 (blue ver-
tical bar). (d) Global Kuramoto order parameter r vs time relative to the onset of
a seizure (time interval 30 s). The horizontal dashed gray line denotes the time
average over 3 h. The horizontal full red line marks the threshold of r = 0.8. If
r > 0.8, for more than 8 s, we define this as a seizure (pink shaded region).
(e) Space–time plot of the dynamical phases corresponding to panel (d). The
left (right) hemisphere is shown in the lower (upper) half. Simulation parameters:
a = 0.5, ε = 0.05, ϕ = π

2
− 0.1, N = 90, σ = 0.6.

almost 1 [panel (c)]. The temporal average of the order parameter
〈r〉 [horizontal dashed gray line in (d)] and its standard deviation δ

are given by 〈r〉 ± δ = 0.59 ± 0.21 for the full simulation of 164 min.
We define a threshold of high synchrony as rth = 〈r〉 + δ = 0.8
[horizontal red line in (d)]. This threshold value is kept at 0.8 for
all simulations in this article, even if the mean and the standard
deviation differ for other topologies. In the simulation presented in
Fig. 1, the order parameter is found to be in high synchrony with
r > 0.8 during 17% of the simulation time. Only if the synchroniza-
tion remains above the threshold for at least 8 s, we define this time
interval as a seizure.

In Fig. 1(d), the order parameter is shown vs time for one exem-
plary seizure. Approximately, 6 s prior to the start of the seizure, the
order parameter drops to a low value of r ≈ 0.2. Such an appar-
ent desynchronization can often be observed prior to the onset of
focal epileptic seizures,36,53–55 and it is not yet clear whether it can
be observed prior to generalized seizures in humans, although it

has been observed in animal studies.56 The order parameter then
increases above r > 0.8 (onset of seizure) and remains in high syn-
chrony for almost 10 s. The seizure interval is shown as a pink
shaded region; it marks the time of high synchronization without
interruption. In the full simulation of 164 min, 11 seizures were
detected, giving an average of 4 seizures per hour. Their average
duration was 10.8 s, with a standard deviation of 1.3 s. In Fig. 1(e),
the dynamic phases of the oscillators are shown as a space–time plot
for the same time interval as in Fig. 1(d). The lower half of the panel
corresponds to the left hemisphere (k ≤ 45) and the upper half to
the right hemisphere (k ≥ 46). Since both hemispheres synchronize
strongly, this resembles a generalized seizure.

B. Random surrogate network

In order to gain deeper insight into the interplay of dynam-
ics and network topology, especially regarding the occurrence of
seizures, we consider different artificially constructed networks.
First, we study a surrogate network with all links of the empirical
connectivity matrix randomly rewired (Fig. 2). Note that the set of
weights of all links is the same as in Fig. 1. However, the graph
in panel (b) looks much denser due to the larger number of inter-
hemispheric long-range connections. The simulation of the global
Kuramoto order parameter r(t), for 1 h, shows that, on average, the
system is less synchronized, see Fig. 2(c). Note that there are very
short intervals of strong synchronization despite the very low aver-
age degree of synchronization. However, high synchrony r > 0.8 is
observed only in 1% of the simulation time, and one such event is
shown in Fig. 2(d). The global synchronization at t ≈ 7 s is simi-
lar to the global synchronization in Fig. 1(d) at t ≈ 7 s. However,
the dynamic phases of the space–time plot in Fig. 2(e) appear less

FIG. 2. Same as Fig. 1 with all links randomly rewired. Simulation parameters as
in Fig. 1.
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TABLE I. Networkmeasures for various topologies. Empirical: empirical diffusion ten-

sor imaging network, Random Surr.: random surrogate network with DTI weights,

Fractal Unw.: fractal connectivity (unweighted), Fractal DTI: fractal connectivity with

randomly selected DTI weights, SW: small-world Watts–Strogatz model with rewiring

probabilities p; Nodes: number of nodes; Links: number of (non-zero) links; Weights:

weighted/unweighted; S: average node strength; C: average (weighted) clustering

coefficient; L: mean (weighted) shortest path length.

Network Nodes Links Weights S C L

Empirical 90 7793 Weighted 1.3 1.7 × 10−3 59
Random Surr. 90 7793 Weighted 1.3 1.0 × 10−3 34
Fractal Unw. 82 1312 Unweighted 16 0 2.1
Fractal DTI 82 1312 Weighted 0.11 0 270
SW p = 0 90 270 Unweighted 6 0.60 7.9
SW p = 0.006 90 270 Unweighted 6 0.57 5.1
SW p = 0.232 90 270 Unweighted 6 0.25 3.0
SW p = 1 90 270 Unweighted 6 0.05 2.7

coherent since the connectivity of neighboring nodes is, on average,
much smaller in the random network, preventing local synchroniza-
tion. Since r > 0.8 never holds for more than 8 s, according to our
definition, not a single seizure is found in the simulation. The aver-
age degree of synchronization 〈r〉 = 0.23 decreases significantly as
compared to the one seen for the empirical connectivity (Fig. 1).
The links in this random network are the same as in the empir-
ical network. Therefore, also the average node strength is equal,
see Table I. However, the weighted clustering coefficient57 and the
average weighted shortest path length58 decrease by 41% and 42%,
respectively. It is difficult to assess which network measure is an
appropriate characteristic quantity related to the decrease in the
average degree of synchronization. We address this question later
in Sec. III E.

Interestingly, by increasing σ to 0.7 in the random surrogate
network, the system attains an average Kuramoto order parameter
of 〈r〉 = 0.60, similar to the empirical connectivity. However, even if
high synchrony r > 0.8 is observed 47% of the time (see Fig. S1 in the
supplementary material), only 4.7 seizures per hour were detected,
compared to 4 seizures per hour and 17% high synchrony with the
empirical connectivity, see Table II.

C. Fractal connectivity

In mathematics, a fractal is a self-similar structure with a
non-integer Hausdorff dimension. In nature, structures similar
to fractals appear frequently.59,60 The white matter tracts in the
human brain were reported to have a quasi-fractal structure.61,62

This inspired simulations of networks of FHN oscillators with a
one-dimensional63–66 or two-dimensional30,67 fractal coupling struc-
ture, and also for other dynamical models.68–73 To create a (one-
dimensional) ring network with fractal connectivity, we follow the
procedure described in Ref. 67. Choose a base pattern binit that con-
sists of a string of ones and zeros. In this article, binit = (101) is used.
Then, iterate this base n times: For each 1, substitute the initial base
pattern binit, for each 0, substitute a string of zeros of size b with
b = 3 corresponding to the length of the initial base pattern. The

TABLE II. Comparison of seizures for different networks. σ : coupling strength; 〈r〉:

average order parameter, 1r = rmax − rmin: range of r ; r > 0.8: percentage of time

with high synchrony; Num: number of seizures per 1 simulation hour; Duration: aver-

age duration of seizures. For each of the last four topologies, ten simulations with an

average of 2.9 h were performed. For p= 0, r > 0.8 was true 0% of the time for two

simulations and 100% for eight simulations. Minimum duration of seizures 8 s.

Topology σ 〈r〉 1r r > 0.8 Num Duration

Empirical 0.6 0.59 0.99 17% 4.0 10.8 ± 1.3 s
Random Surr. 0.6 0.23 0.99 1% 0 . . .
Random Surr. 0.7 0.60 0.99 47% 4.7 10.2 ± 2.6 s
Fractal Unw. 0.01 0.77 0.47 32% 0 . . .
Fractal DTI 6.1 0.37 0.95 2% 0 . . .
p = 0 0.05 0.79 0.07 80% 0 . . .
p = 0.006 0.05 0.47 0.10 0% 0 . . .
p = 0.232 0.05 0.52 0.98 14% 0.6 14.7 ± 3.5 s
p = 1 0.05 0.73 0.81 25% 0.5 9.0 ± 0.1 s

nth hierarchy level is reached after n − 1 iterations. A mathemati-
cal fractal is obtained in the limit of an infinite number of iterations
n → ∞. Since a network is finite, only a finite number of iterations
can be performed, and the resulting string is a quasi-fractal. Put 0
in front of the string to exclude self-coupling.69 The resulting string
of binary digits becomes the first row of the fractal ring adjacency
matrix, where 1 represents a link, 0 represents no link. For every fol-
lowing row, the string is shifted by one element to the right. Via this
procedure, a circulant matrix is obtained. After n hierarchical steps,

FIG. 3. Same as Fig. 1 for a ring network with fractal connectivity. Simulation
parameters as in Fig. 1, except for σ = 0.01 and N = 82. In (b), for clarity, only
links emanating from one representative node are shown. All other nodes have
the same coupling topology.
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the obtained network consists of N = bn + 1 nodes. In this paper,
n = 4, so the network has 82 nodes. The adjacency matrix is shown
in Fig. 3(a) and the connections for one exemplary node are sketched
in Fig. 3(b).

The mean node strength S =
∑

i si/N, where si =
∑

j aij is the
ith node strength or node degree, is very large (S = 16) for this
network. Consequently, it synchronizes completely at a relatively
small coupling strength σ . Therefore, in order to avoid permanent
complete synchronization, we reduce σ to 0.01. Figure 3(c) shows
the order parameter for the (unweighted) fractal ring. The average
order parameter is 〈r〉 = 0.77, high synchrony r > 0.8 is observed
during 32% of the time, but the range of r-values in (c) is com-
paratively small (0.5). Overall, the synchronization varies little, and
no clearly defined seizures were found (d). The space–time plot (e)
shows an overall moderately synchronized pattern without distinct
bursts of synchrony. Thus, it seems that fractal connectivities are
not appropriate to model realistic epileptic seizures. Either different
fractal connectivities or a larger network size or a particular weight
distribution is necessary. The latter point is addressed next.

D. Weighted fractal connectivity

To achieve a more realistic weight distribution than just 1 and
0, we replace all 1312 non-zero links of the fractal ring in Fig. 3 by
randomly chosen weights of the 7793 links of the empirical con-
nectivity matrix in Figs. 4(a) and 4(b). Due to the much smaller
weights, we have to increase σ from 0.01 to σ = 6.1 in order to
obtain partial synchrony. Now, the dynamics resembles the empir-
ical one, as shown in Fig. 4(c). The order parameter varies strongly
in time. However, despite a few short events of high synchrony

FIG. 4. Same as Fig. 1 for a ring network with fractal connectivity and weights
selected randomly from the empirical connectivity matrix in Fig. 1. Simulation
parameters as in Fig. 1, except for σ = 6.1 and N = 82.

r > 0.8 during 2% of the total time, not a single seizure was detected,
Figs. 3(d) and 3(e). For higher values of σ , still, no seizure can
be found because the system starts to stabilize at a fixed value of
the order parameter of about r ≈ 0.7. Overall, the fractal connec-
tivity with empirical weights shows rich, brain-like synchronization
behavior. However, despite short phases with high synchrony, no
well-defined seizures were found.

E. Small-world networks

Next, we consider small-world-like networks, which can be
constructed according to the Watts–Strogatz algorithm74 by starting
from a nonlocally coupled ring and randomly rewiring links with
a probability p. With increasing p, these networks are character-
ized by decreasing average clustering coefficient (which quantifies
the strongly coupled neighborhoods) and decreasing mean shortest
path length. In some intermediate regime of p and for large enough
average node degree S, the small-world property of large clustering
coefficient and short path length is found. For the largest prob-
ability p = 1, we obtain an Erdős–Rényi random network.75 The
simulations are repeated 10 times for each probability p with dif-
ferent random initial conditions. The coupling strength σ is chosen
for each p such that the simulations give a sufficiently high degree
of synchronization, while avoiding complete synchrony during the
whole simulation.

In the nonlocally coupled ring at p = 0, each of the 90 nodes
is connected to its three nearest neighbors on each side; thus, the
node degree (strength) is S = 6. The links are nondirected and

FIG. 5. Same as Fig. 1 for a nonlocally coupled ring network, corresponding to
the Watts–Strogatz model with rewiring probability p = 0 and N = 90, S = 6
(every node is coupled to three neighbors on each side). Average clustering coef-
ficient C = 0.60, mean shortest path length L = 7.92. Simulation parameters as
in Fig. 1, except for σ = 0.0506.
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nonweighted. This nonlocally coupled ring is shown in Figs. 5(a)
and 5(b). It is necessary to tune the coupling parameter σ = 0.0506
very carefully. For slightly larger values of σ , the system would fully
synchronize during the whole simulation time, while for lower σ , it
would not synchronize at all. This underlines the system’s sensitivity
to small parameter changes.76,77 For a long shortest path length and
maximum clustering in the nonlocally coupled ring with p = 0, the
system fully synchronizes (〈r〉 = 0.99) in eight simulations. In two
simulations, it is completely desynchronized (〈r〉 = 0.01), leading
to an arithmetic mean of 〈r〉 = 0.79 for all simulations. One typical
simulation, with 〈r〉 = 0.99, is shown in Figs. 5(c)–5(e).

If the rewiring probability is increased slightly to p = 0.006,
we obtain a small-world network. It still has 95% of the cluster-
ing coefficient of the nonlocally coupled ring, but its mean shortest
path length is reduced by 36%. The topology is shown in Figs. 6(a)
and 6(b). With an increase of p and the resulting reduction of
the average shortest path length, the synchronization decreases, see
Fig. 6(c). While all other parameters are kept constant, and the clus-
tering coefficient remains high, 〈r〉 = 0.80 is reduced to 〈r〉 = 0.47
averaged over all ten simulations. For p = 0.006, 〈r〉 is for some
simulations as low as 〈r〉 = 0.03 and for some simulations as high
as 〈r〉 = 0.76, showing a higher sensitivity to initial conditions. In
both scenarios, p = 0, and p = 0.006, and for all simulations, the
instantaneous degree of synchronization is approximately constant
in time and varies in a very small range of 0.1. In fact, by inspecting
Figs. 5(d) and 6(d) closely, one can recognize small periodic ampli-
tude fluctuations of r(t). This seems to be related to the slow–fast
nature of the FHN system. Since the range of these fluctuations is
very small, when full synchronization does not occur, no seizures are

FIG. 6. Same as Fig. 1 for a Watts–Strogatz network with rewiring probability
p = 0.006. Average clustering coefficient C = 0.57, mean shortest path length
L = 5.07. Simulation parameters as in Fig. 1, except for σ = 0.0506, mean node
degree S = 6.

detected. The average degree of synchronization, however, depends
sensitively upon the random initial conditions. All values are listed
in Table SI of the supplementary material.

By comparing Figs. 5 and 6, the impact of the shortest path
length upon the network dynamics becomes apparent. In general,
after decreasing the network’s shortest path length, the synchro-
nization reduces significantly. In theory, this should reduce the risk
of epileptic seizures; it contradicts earlier findings of an, on aver-
age, shorter path lengths in the functional networks of subjects
with epilepsy.22 However, our results should be taken with caution:
The range of the order parameter is smaller than 0.1 in both cases
and does not allow for realistic brain modeling. This indicates that
brain networks must not have too large clustering coefficients, which
questions the hypothesis that the human brain is a small-world
network.78–83

Next, we increase the rewiring probability to p = 0.232, see
Fig. 7. The clustering and shortest path are reduced to 41% and 38%
of their original values. At p = 0.232, the mean shortest path length
is very close to its minimum, and the clustering is still significant.
The order parameter is 〈r〉 ≈ 0.52 for all simulations, proving its
independence of initial conditions. We find high synchrony during
14% of the time, and 0.6 seizures per hour with an average dura-
tion of 14.7 s with a standard deviation of 3.5 s. One seizure is shown
in Figs. 7(d) and 7(e). The dynamics is similar to the one for the
empirical connectivity.

For p = 1, corresponding to a random network (Fig. 8), the
mean shortest path length reduces further by only 11%, whereas
the clustering reduces further by 79%. Now, we find a very high
Kuramoto order parameter of 〈r〉 = 0.73 and a high degree of

FIG. 7. Same as Fig. 1 for a Watts–Strogatz network with rewiring probability
p = 0.232. Average clustering coefficient C = 0.25, mean shortest path length
L = 2.97. Simulation parameters as in Fig. 1, except for σ = 0.0506, mean node
degree S = 6.
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FIG. 8. Same as Fig. 1 for a random network (Watts–Strogatz network with
rewiring probability p = 1). Average clustering coefficient C = 0.053, mean
shortest path length L = 2.67. Simulation parameters as in Fig. 1, except for
σ = 0.0506, mean node degree S = 6.

synchrony during 25% of the time. Note the very high average of
r. Strikingly though, despite the strong synchronization in general,
fewer seizures (only 0.5 per h) are observed as compared to our
findings reported in Fig. 7. One such seizure is shown in Figs. 8(d)
and 8(e). The values of the network measures for all topologies are
summarized in Table I; and the simulation results are summarized
in Table II.

By comparing Figs. 7 and 8, it becomes apparent that seizures
are more likely for a higher average clustering coefficient of the net-
work than for a smaller clustering coefficient. This is in line with
Ref. 22. Remarkably, this is the case even though the average degree
of synchronization decreases significantly for a larger average clus-
tering coefficient. This shows that the occurrence of seizures is not
proportional to the average global Kuramoto order parameter of the
network, as one might expect. For a reduction of the clustering coef-
ficient, the synchronization might increase, while the probability of
seizures decreases.

When comparing Fig. 7(c) with Fig. 8(c), the impact of cluster-
ing on seizure probability shows up (since the mean shortest path

length changes little). For rich synchronization dynamics, including
both very low and very high synchronization, the clustering coef-
ficient needs to be sufficiently high: For p ≤ 0.006, the difference
between maximum and minimum of r(t) is 1r = 0.1, whereas for
p ≥ 0.232, it is 1r ≥ 0.8.

In conclusion, our simulations indicate that the human brain
seems to effectively function in a specific window of medium clus-
tering. If the clustering is too large, the neural synchronization is
approximately constant in time (1r ≈ 0.1). The brain, however,
shows both low and high synchronization values on the EEG during
different tasks and mental states such as sleep. Moreover, epilep-
tic brains, which function normally most of the time, appear to
synchronize during generalized seizures fully. This shows that the
brain is capable of sustaining both very coherent and very incoher-
ent oscillatory states, which is not possible for too large clustering
coefficients.

On the other hand, if the clustering coefficient is too small,
the synchronization fluctuates rapidly in time and does not resem-
ble the dynamics of simulations with an empirical brain network.
Furthermore, the range of the degree of synchronization (1r ≈ 0.7)
is decreased compared to medium clustering (1r ≈ 1). One might
speculate, based on these simulations, that the difference between
healthy and epileptic brains might show up in the network’s slightly
altered clustering coefficient.84,85

IV. COMPARISON WITH EEG-RECORDED ABSENCE

SEIZURES

We have obtained our EEG recordings from the Department
of Epileptology of the University of Bonn from a 12 years old sub-
ject who suffered from absence seizures. The study was approved by
the ethics committee of the University of Bonn, and a parent gave
written informed consent that the clinical data might be used and
published for research purposes. EEG data were acquired at a sam-
pling rate of 256 Hz (16 bit A/D conversion) within a bandwidth
of 0.3–70 Hz from 19 electrodes in bipolar montage. Locations and
nomenclature of these electrodes are standardized by the American
Electroencephalographic Society.87

In order to facilitate a comparison between EEG-recorded and
simulated epileptic-seizure-related synchronization phenomena, we
estimated which AAL brain area was recorded by the different
EEG electrode pairs. We chose those AAL regions that are located
between the electrode pairs right below the skull (see Table III) and
considered the electrode-to-brain area assignment by Ref. 88. We
emphasize that a perfect assignment between EEG electrodes and
AAL brain areas is not possible.

TABLE III. Mapping of the EEG electrodes to the AAL. Electrodes were referenced in bipolar montage. This means that the EEG time series for AAL area 7 in Fig. 9(d), for

example, shows the measured voltage difference of electrodes F7 and T3. The AAL area covered by their locations were approximately identified and assigned. The electrode

locations are shown in Fig. 9(b).

Left/right Fp1–F3/ Fp1–F7/ F3–C3/ C3–Cz/ F7–T3/ FT9–T3/ T3–T5/ T3–C3/ C3–P3/ T5–O1/ P3–O1/
electrodes Fp2–F4 Fp2–F8 F4–C4 Cz–C4 F8–T4 T4–FT10 T4–T6 C4–T4 C4–P4 T6–O2 P4–O2
AAL number 2/47 4/49 10/55 1/46 7/52 41/86 43/88 29/74 30/75 26/71 25/70
Brain area Front sup Front mid Supp mot area Precentral Front inf tri Temp sup Temp mid Postcentral Par sup Occ mid Occ sup
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We apply a Morlet wavelet to filter the EEG signals for frequen-
cies in the range fi ∈ {1 Hz, . . . , 32 Hz} and extract the correspond-
ing phases. From the phase data, we calculate the global Kuramoto
order parameter r according to Eq. (3). Additionally, we introduce
a new measure that we call global phase coherence R1. It general-
izes the mean phase coherence between two oscillators i, j, studied
earlier,41,53,89–91 to its arithmetic mean over all pairs (i, j),

R1 =
1

N(N − 1)/2

N
∑

i,j=1,
i>j

∣

∣

∣

∣

∣

1

T

T
∑

t=1

ei18ij(t)

∣

∣

∣

∣

∣

, (4)

where 18ij(t) = φi(t) − φj(t) is the dynamic phase difference cor-
responding to two electrode pairs (i, j) at time t. The complex
number ei18ij(t) is averaged over the time window T: If the phase
relationship of the two pairs is constant throughout the time window
T (frequency-locking), the modulus of the time-averaged ei18ij(t)

becomes 1. If the phases are decoupled, the modulus of the averaged
ei18ij(t) decreases. For small T, the time resolution of the mean phase
coherence is large. However, for very small T in the limit T → 0, the
global phase coherence R1 → 1 because any two pairs are perfectly
phase-locked for an infinitely small time interval, which gives no
information about the temporal evolution of the phase coherence.
For large T, smaller temporal fluctuations are averaged out, and sig-
nificant changes in the coherence vs time can be observed. However,

in the limit T → ∞, the time resolution of R1 is lost. We choose a
time window of three oscillation periods for each frequency band,
focusing on high time resolution while allowing for strong temporal
fluctuations of R1. The global phase coherence is defined in such
a way that the normalization factor makes it 1 for perfect coher-
ence. We have calculated the global phase coherence during epileptic
seizures for different frequencies and found the best seizure identifi-
cation at f = 3 Hz, which is typical for absence seizures.11,52 For this
frequency, our time window of three periods corresponds to T = 1 s.
Note that this coherence measure is 1 for phase-locked states with a
fixed phase difference, in contrast to the Kuramoto order param-
eter, which is 1 only for complete in-phase synchronization of all
oscillators.

Figure 9 presents a comparison of our simulations for an
empirical connectivity with an EEG recording of an absence seizure.
Electrodes and brain areas are depicted in Figs. 9(a)–9(c), mea-
sured EEG data in Fig. 9(d), simulated and EEG-related global
phase coherence and global Kuramoto order parameter are shown in
Figs. 9(e) and 9(f), respectively, and the simulated and EEG-related
space–time plot of the phases in Figs. 9(g) and 9(h), respectively.

Figure 9(a) shows the 90 AAL brain areas underlying the simu-
lations in (e) and (g) as red and blue dots. In (b), the approximated
electrode locations are shown as black dots. The EEG time series are
obtained by subtracting the voltages from two electrode pairs. For
each of the 22 bipolar recording channels, we assign the closest AAL

FIG. 9. Comparison of simulated and measured epileptic-seizure-related synchronization phenomena. (a) The 90 AAL brain areas marked by red and blue dots. The
simulations of the network shown in panels (e) and (g) are based on all areas (red and blue). However, the global phase coherence and global Kuramoto order parameter
are calculated, for better comparison with the EEG-recorded seizure, for the areas shown in blue only. (b) Top view on brain: Electrode locations on the brain (black dots).
All AAL brain areas corresponding to the blue dots in panel (a) are assigned to the EEG locations and highlighted in color. (c) Bottom view on brain: the gray line connects
the exemplary electrode pair F7–T3 to their EEG time series shown in panel (d). (d) EEG recording of an exemplary absence seizure. Red vertical lines mark the onset
and termination. (e) Simulated global Kuramoto order parameter r vs time (time interval 30 s) in black during one simulated seizure. Global phase coherence R1 vs time in
blue. The horizontal gray dashed line marks the threshold of r = 0.8. In contrast to the previous figures, here the threshold r > 0.8 is applied to R1 instead of r to enable a
comparison between simulated and measured data. The resulting duration of the simulated seizure is shown as a pink shaded region. (f) Same as in panel (e) for the EEG
recording in (d). (g) Simulated space–time plot of the dynamic phases corresponding to panel (e). The dynamical phases of the left (right) hemisphere are shown in the lower
(upper) half. The dynamics results from all 90 brain areas, but only the phases of the 22 areas sampled with the EEG are shown. Simulation parameters: a = 0.5, ε = 0.05,
ϕ = π

2
− 0.1, N = 90, σ = 0.6. (h) Same as panel (g) for EEG recording in panels (d) and (f). (a)–(c) were created using BrainNet Viewer.86
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areas, which are colored in (b). These colored brain areas are marked
blue in (a), and the ones which are not associated with electrodes
in red. Figure 9(c) provides the bottom view of (b) to clarify that
no subcortical brain areas are assigned to the comparison. The EEG
recording is presented in (d). For three exemplary electrode pairs,
denoted by gray arrows in (c), gray lines connect them to the data in
(d). The seizure start and end are marked by vertical red lines and
are determined by visual inspection of the EEG by an expert.

In Figs. 9(e) and 9(f), both the global Kuramoto order param-
eter r(t) (black line) and the global phase coherence R1(t) (blue
curve) are shown for simulation and EEG recording, respectively.
In the simulation, the coupled dynamics of all 90 brain areas is com-
puted. However, only the 22 areas that were accessible with the EEG
are used to calculate the simulated measures R1 and r for better
comparison.

The phases underlying the computation of R1 and r are shown
in the space–time plots of Figs. 9(g) and 9(h). We extracted phases
from the EEG data shown in Fig. 9(d) after filtering for f = 3 Hz.
The frequency synchronization during the seizure can easily be dis-
tinguished from the pre- and post-seizure activities. The left and the
right y-axis show the label of each of the 22 assigned AAL brain areas
in Table III.

Let us examine the EEG-recorded seizure in more detail. The
value of the global phase coherence in panel (f) before and after
the seizure is R1 ≈ 0.5. At the (electrical) onset of the seizure, R1

increases quickly and reaches almost R1 ≈ 1 within 1 s. Applying
our threshold condition R1 > 0.8 to the global phase coherence,
we mark the onset and termination of the seizure, shown as a pink
shaded region. Note that the start of the seizure (vertical red line)
slightly precedes the pink shaded region. This is expected since we
obtain R1 by averaging over the time window T = 1 s, resulting in
a lower time resolution of R1. For the same reason, the end of the
seizure, according to our threshold definition, slightly precedes the
marked seizure termination. However, in both cases, the measured
absence seizure lasts for approximately 10 s. Overall, four of the five
seizures from the data set (all shown in the supplementary material)
were identified correctly by our seizure detection criterion.

Note that during the recorded seizure temporal fluctuations
of the Kuramoto order parameter r(t) are stabilized, in accordance
with our simulations. However, contrasting our simulations, r(t)
remains at a low value of r ≈ 0.5. Therefore, if we apply our previous
seizure detection criterion r > 0.8 to the Kuramoto order parameter,
we would not detect a seizure from the EEG recording. This high-
lights the difference between both synchronization measures. Due
to time delays in the real system (brain), we cannot expect complete
phase synchronization but only synchronization with respect to rel-
ative phases, which is measured by R1. For this reason, R1 is more
appropriate than r for quantifying brain synchrony.

When examining the simulated data in Fig. 9(e), we notice
that R1 and r correlate strongly, since delay is not included in the
simulated Eq. (1). Due to the small averaging window of T = 1 s,
the signal fluctuates strongly before and after the simulated seizure.
We show the same plot with T = 3 s (Fig. S2) and with T = 5 s
(Fig. S3) in the supplementary material. For these longer averaging
windows, the fluctuations are successively averaged out, and sub-
stantial similarity between EEG recording and simulation can be
seen. However, the time resolution decreases, prohibiting the precise

determination of the start and end of the simulated seizure. For a
better comparison of our simulation with the EEG recording, we
have also applied our seizure detection criterion to R1 in the simula-
tion. The simulated seizure lasts 13 s and is shown as a pink shaded
region. In general, R1 and r are similar for the simulation, but due
to the weaker definition of synchronization, the global phase coher-
ence is, on average, larger than the order parameter. Overall, we
find both for the simulated and empirically observed seizures (i) a
global phase coherence of r ≈ 0.6 (simulation) and r ≈ 0.5 (empiri-
cal) before the seizure, (ii) r ≈ 1 (simulation and empirical) during
the seizure, and (iii) seizure durations of 10.8 ± 1.3 s (simulation)
and 10.2 ± 2.4 s (empirical). Due to the quantitative similarity of
the simulated events of excessive synchronization with empirical
seizures,92 we term them epileptic-seizure-related synchronization
phenomena.

V. CONCLUSION

We have shown that FitzHugh–Nagumo oscillators, coupled
via empirical structural connectivities measured in human subjects,
exhibit synchronization phenomena that resemble the ones seen
during epileptic seizures. Comparing our long-term simulations
using empirical connectivities to EEG-recorded epileptic seizures,
we have found that the simulations show striking similarities to the
real data. By simulating FitzHugh–Nagumo oscillators on a variety
of networks, we have gained insight into the interplay of network
structure and synchronization. Our work highlights that both the
weight distribution and the clustering coefficient of the network are
critical components in the synchronization behavior. For a better
understanding of epilepsy, it might be useful to compare these and
other network measures in both structural and functional brain net-
works of people with epilepsy and healthy subjects.7 In order to
obtain insight into the interplay of dynamics and network topol-
ogy, we have performed simulations for different artificial network
structures: random networks, regular nonlocally coupled ring net-
works, ring networks with fractal connectivities, and small-world
networks with various rewiring probabilities. In more detail, by ran-
domly rewiring its links, we have artificially destroyed the highly
organized structure of the empirical connectivity matrix, while keep-
ing the weight distribution and average node strength constant.
Next, we have used a quasi-fractal connectivity on a ring network.
To enable a better comparison with the empirical network, we have
transformed the quasi-fractal ring into a weighted network with an
empirical weight distribution. Finally, we have evaluated the impact
of the average clustering coefficient and the average shortest path
length on the number of observed epileptic-seizure-related synchro-
nization episodes. We have examined both network measures by
employing the Watts–Strogatz small-world algorithm with specific
rewiring probabilities. Among the artificial networks, a small-world
network with intermediate rewiring probability results in the best
agreement with the simulations for empirical structural connec-
tivity. For the other network topologies, either no spontaneously
occurring epileptic-seizure-related synchronization phenomena are
found in the simulated dynamics, or the overall degree of synchro-
nization remains high throughout the simulation. This indicates that
a topology with some balance of regularity and randomness favors
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the self-initiation and self-termination of episodes of high, seizure-
like synchronization. In particular, the value of the clustering coef-
ficient should not be too high (as for regular ring networks) and
not too low (as for pure random networks), and thus the rewiring
probability should assume intermediate values between 0 and 1.
There is a subtle interplay of regularity and randomness where com-
munity structures may also play a role, and this might be considered
in future directions of research.

It is known that epilepsy can be caused by macroscopic changes
in the network structure, such as brain lesions caused, e.g., by
stroke.93 Furthermore, in epilepsy surgery, the brain’s network struc-
ture is purposely changed to treat certain types of epilepsy.94–96

Therefore, future perspectives of our work might be directed toward
the question whether potential differences in the network structure
of the brains of people with epilepsy compared to the ones of healthy
subjects might perhaps exist.

SUPPLEMENTARY MATERIAL

See the supplementary material for figures of simulations with
other network parameters, additional EEG recorded seizure data,
long-time simulations, and a table of cortical and subcortical regions
according to the Automated Anatomical Labeling (AAL) atlas.
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APPENDIX: DATA ACQUISITION FOR THE EMPIRICAL

NETWORK

The anatomical network of the cortex and subcortex was mea-
sured using Diffusion Tensor Imaging (DTI). The Functional Mag-
netic Resonance Imaging of the Brain (FMRIB) Software Library
(www.fmrib.ox.ac.uk/fsl/) was employed to apply probabilistic trac-
tography to the data, enabling segregation of the brain into 90 areas
according to the Automated Anatomical Labeling (AAL) atlas.42 The
anatomical names of the brain areas for each index k are given
in Table SII of the supplementary material. The connecting white-
matter fibers between the areas, which correspond to links in our
network, were estimated by measurement of the preferred diffusion
directions: For each voxel, through probabilistic tractography, a set
of ns = 5000 streamlines was obtained which are hypothesized to
correlate with the white-matter tracts. The proportion of streamlines
connecting from area j to all other areas k is given by the probability
coefficient Pjk from which the adjacency matrix Akj is constructed.
To eliminate individual variation, the matrices of 20 subjects (mean

age 33 years, standard deviation 5.7 years, 10 females, 2 left-handed)
are averaged, giving rise to the topology of Figs. 1(a) and 1(b). The
pipeline for processing the DTI data has been adopted from a pre-
vious study of differences in connectivity patterns between healthy
subjects and schizophrenia patients.97 Obtaining such connectivity
information using diffusion tractography is known to face a range
of challenges.98,99
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