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Abstract – We analyze partial synchronization patterns in a network of FitzHugh-Nagumo os-
cillators with empirical structural connectivity measured in healthy human subjects. We report
a dynamical asymmetry between the hemispheres, induced by the natural structural asymmetry.
We show that the dynamical asymmetry can be enhanced by introducing the inter-hemispheric cou-
pling strength as a control parameter for partial synchronization patterns. We discuss a minimum
model elucidating the modalities of unihemispheric sleep in human brain, where one hemisphere
sleeps while the other remains awake. In fact, this state is common among migratory birds and
mammals like aquatic species.

editor’s  choice Copyright c© EPLA, 2019

Introduction. – A well-known phenomenon in nature
is unihemispheric slow-wave sleep, exhibited by aquatic
mammals including whales, dolphins and seals, and mul-
tiple bird species. Unihemispheric sleep, as the name
suggests, is the remarkable ability to engage in deep (slow-
wave) sleep with a single hemisphere of the brain while
the other hemisphere remains awake [1–3]. Interestingly,
sleep and wakefulness are characterized by a high and low
degree of synchronization, respectively [1]. Sleep is as-
sociated with specific synchronized oscillations, i.e., sleep
spindles and slow oscillations in the thalamocortical sys-
tem [4]. In addition, arousal- and sleep-promoting neural
assemblies undergo collective activity resulting in secretion
of sleep-regulating neurotransmitters [5]. While the syn-
chronization processes can differ between adults and chil-
dren [6], transitions from wakefulness to sleep are widely
accompanied by synchronization phenomena [7].

In the human brain the first-night effect, which de-
scribes troubled sleep in a novel environment, has been
recently related to asymmetric dynamics, i.e., a manifes-
tation of one hemisphere of the brain being more vigilant
than the other [8]. Sleep is a dynamical macrostate of

the brain that is observed over a wide range of animal
species. Sleep is accompanied by a loss of consciousness
and conscious perceptions, and muscle activity is reduced
or absent. Sleep alternates between rapid-eye-movement
(REM) and non-REM stages N1, N2, N3, where the latter
are dominated by slow oscillations (1Hz and below) which
can also emerge locally [9,10]. Sleep stage switching dy-
namics includes wake/sleep asymmetric stochasticity [11],
but obeys an underlying control by regulatory circuits
forming bistable biological flip-flop switches [12–15], and
sleep regulation is coupled to the sleep oscillations of the
thalamocortical system [16]. While most animals follow
a similar qualitative sleep pattern and fall into sleep with
both hemispheres, in certain bird and mammal species
sleep can be unihemispheric [3]. It has been speculated
that unihemispheric sleep is related to the spontaneous
symmetry-breaking phenomenon of chimera states in os-
cillator networks [17,18]; those states combine spatially
coexisting domains of synchronized and desynchronized
dynamics [19–23].

While the neurophysiological processes that ensure the
existence of this dynamical state of unihemispheric sleep
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remain largely unknown, it is presumed that a certain
degree of structural interhemispheric separation is a nec-
essary condition for this pattern to persist. Therefore,
we propose to model unihemispheric sleep by a two-
community network of the two hemispheres where the
inter-hemispheric coupling strength is smaller than the
intra-hemispheric coupling. We model the spiking dynam-
ics of the neurons by the paradigmatic FitzHugh-Nagumo
model, and investigate possible partial synchronization
patterns.

Model. – We consider an empirical structural brain
network shown in fig. 1 where every region of interest is
modeled by a single FitzHugh-Nagumo (FHN) oscillator.

The brain network was obtained from diffusion-weighted
magnetic resonance imaging data measured in healthy hu-
man subjects as part of a larger study focusing on con-
nectivity changes in schizophrenia. For details of the
measurement procedure including acquisition parameters,
see [24], for previous utilization of the structural networks
to analyze chimera states see [25]. The data were an-
alyzed using probabilistic tractography as implemented
in the FMRIB Software Library, where FMRIB stands
for Functional Magnetic Resonance Imaging of the Brain
(www.fmrib.ox.ac.uk/fsl/). The anatomic network of
the cortex and subcortex is measured using Diffusion Ten-
sor Imaging (DTI) and subsequently divided into 90 pre-
defined regions according to the Automated Anatomical
Labeling (AAL) atlas [26]. Each node of the network cor-
responds to a brain region. Indirect information of the
white-matter fibers connecting different brain regions is
provided by diffusion-weighted Magnetic Resonance Imag-
ing (dMRI) measuring the preferred diffusion direction in
each voxel of the brain. Probabilistic tractography then
provides for each voxel a set of ns = 5000 streamlines,
simulating the possible white-matter fiber tracts. A co-
efficient Pkj giving the connectivity probability from the
k-th to the j-th region is introduced by the proportion
of streamlines connecting voxels in region k to voxels of
region j on the condition that they originate in region
k. Thus, a weighted adjacency matrix of size 90 × 90,
with node indices k ∈ N = {1, 2, . . . , 90} is constructed.
Finally, each entry in this adjacency matrix, i.e., the con-
nectivity between every two regions, is averaged over 20
subjects (mean age 33 years, standard deviation 5.7 years,
10 females, 2 left-handed) yielding the average empiri-
cal structural brain network A = {Akj}. The pipeline
for constructing the structural network has been adopted
from a previous study of differences in connectivity pat-
terns between healthy subjects and schizophrenia pa-
tients [27]. Obtaining such connectivity information using
diffusion tractography is known to face a range of chal-
lenges [28,29]. Note that in contrast to the original AAL
indexing, where sequential indices correspond to homol-
ogous brain regions, the indices in fig. 1 are rearranged
such that k ∈ NL = {1, 2, . . . , 45} corresponds to the
left hemisphere and k ∈ NR = {46, . . . , 90} to the right

hemisphere. Thereby the hemispheric structure of the
brain, i.e., stronger intra-hemispheric coupling compared
to inter-hemispheric coupling, is highlighted (fig. 1(a)).
Note that there is a very slight structural asymmetry of
the two brain hemispheres. This structural asymmetry is
well described in the neuroscience literature and is related
to the known asymmetries in localization of psychological
functions, such as the prevalence of language functions in
the left brain hemisphere in humans. Moreover, this lat-
eralization is known to differ between genders as well as
age. Note that while a weak but systematic asymmetry
between the hemispheres (difference between the strength
of corresponding connections in the left and right hemi-
spheres (Wilcoxon rank sum test, p < 0.01)) was observed
in our data set in more than 20 percent of the connections
—most prominently in the temporal cortex— we did not
observe a significant variation of the asymmetry with gen-
der, age, or handedness. This can probably be attributed
to the relatively small size of our sample that provides in-
formation about the general structure and asymmetry of
the brain, but not about its subject-specific variability.

Each node corresponding to a brain region is modeled
by the FitzHugh-Nagumo (FHN) model, a paradigmatic
model for neuronal spiking [30,31]. Note that while the
FitzHugh-Nagumo model is a simplified model of a single
neuron, it is also often used as a generic model for excitable
media on a coarse-grained level. Thus, the dynamics of the
network reads

εu̇k = uk − u3
k

3
− vk

+ σ
∑

j∈NH

Akj [Buu(uj − uk) + Buv(vj − vk)]

+ς
∑

j /∈NH

Akj [Buu(uj−uk)+Buv(vj−vk)], (1a)

v̇k = vk + a

+ σ
∑

j∈NH

Akj [Bvu(uj − uk) + Bvv(vj − vk)]

+ ς
∑

j /∈NH

Akj [Bvu(uj−uk)+Bvv(vj−vk)], (1b)

with k ∈ NH where NH denotes either the set of nodes k
belonging to the left (NL) or the right (NR) hemisphere,
and ε = 0.05 describes the timescale separation between
fast activator variable or neuron membrane potential u
and the slow inhibitor or recovery variable v [30]. De-
pending on the threshold parameter a, the FHN model
may exhibit excitable behavior (|a| > 1) or self-sustained
oscillations (|a| < 1). We use the FHN model in the os-
cillatory regime and thus fix the threshold parameter at
a = 0.5 sufficiently far from the Hopf bifurcation point.
The emerging dynamics for an isolated FHN oscillator is
displayed in fig. 1(c). The coupling within the hemispheres
is given by the intra-hemispheric coupling strength σ while
the coupling between the hemispheres is given by the inter-
hemispheric coupling strength ς. The interaction scheme
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(c)(b)(a)

Fig. 1: Model for the hemispheric brain structure: (a) Weighted adjacency matrix Akj of the averaged empirical structural
brain network derived from twenty healthy human subjects by averaging over the coupling between two brain regions k and j.
The brain regions k, j are taken from the Automated Anatomic Labeling atlas [24], but re-labeled such that k = 1, . . . , 45
and k = 46, . . . , 90 correspond to the left and right hemisphere, respectively. (b) Schematic representation of the graph of the
brain structure with highlighted left (dark blue) and right (light orange) hemisphere. (c) Dynamics of activator u and inhibitor
variable v of the FitzHugh-Nagumo model in the oscillatory regime with ε = 0.05 and a = 0.5 vs. time t.

between nodes is characterized by a rotational coupling
matrix:

B =
(

Buu Buv

Bvu Bvv

)
=

(
cos φ sinφ
− sin φ cos φ

)
, (2)

with coupling phase φ = π
2 − 0.1, causing primarily an

activator-inhibitor cross-coupling. This particular scheme
was shown to be crucial for the occurrence of chimera
states in ring topologies [32] as it reduces the stability
of the completely synchronized state.

Methods. – We explore the dynamical behavior by
calculating the mean phase velocity ωk = 2πMk/ΔT for
each node k, where ΔT denotes the time interval during
which Mk complete rotations were realized. Throughout
the paper we use ΔT = 5000. Furthermore, we introduce
hemispheric measures that characterize the degree of syn-
chronization of the sub-networks and give complementary
information. First, the hemispheric mean phase velocity is

〈ω〉H =
1
45

∑
k∈NH

ωk, (3)

where H denotes either the left (H = L) or the right
(H = R) hemisphere. Thus, 〈ω〉H corresponds to the
mean phase velocity averaged over the left or right hemi-
sphere, respectively. To quantify the dynamical difference
between the left and the right hemisphere we use the dif-
ference between these hemispheric mean phase velocities
Δω = 〈ω〉R − 〈ω〉L.

Second, the hemispheric Kuramoto order parameter

RH(t) =
1
45

∣∣∣∣∣
∑

k∈NH

exp[iθk(t)]

∣∣∣∣∣ (4)

is calculated by means of an abstract dynamical phase θk

that can be obtained from the standard geometric phase
φ̃k(t) = arctan(vk/uk) by a transformation which yields a
constant phase velocity θ̇k. For an uncoupled FHN oscilla-
tor the function t(φ̃k) is calculated numerically, assigning
a value of time 0 < t(φ̃k) < T for every value of the

geometric phase, where T is the oscillation period. The
dynamical phase is then defined as θk = 2πt(φ̃k)/T , which
yields θ̇k = const. Thereby identical, uncoupled oscillators
have a constant phase relation with respect to the dynami-
cal phase. Fluctuations of the order parameter RH caused
by the FHN model’s slow-fast time scales are suppressed
and a change in RH indeed reflects a change in the degree
of synchronization. The Kuramoto order parameter may
vary between 0 and 1, where RH = 1 corresponds to com-
plete phase synchronization, and small values characterize
spatially desynchronized states. Finally, we use the spatial
correlation coefficient introduced by Kemeth et al. [33]:

g0(t) =

√∫ δ

0

g(t,D)dD, (5)

that measures the relative amount of synchronized oscil-
lators. It is defined in terms of the normalized probability
density function g(t,D), which is calculated as the proba-
bility of finding a distance D among all pairwise distances
{Dkj} = {|eiθj − eiθk |} between the states of all oscilla-
tors k, j, and generalizes the local curvature in systems
with a spatial dimension. This distance is calculated us-
ing the dynamical phase on the unit cycle where the maxi-
mum distance of two oscillators is Dmax = 2. For complete
phase synchronization the distance between each pair of
oscillators vanishes, i.e., D = 0 and g(t,D) = δ(D), hence
g0(t) = 1, while a totally incoherent system gives a value
of g(t, 0) = 0, hence g0(t) is small. Two oscillators are con-
sidered spatially correlated if their distance is smaller than
some threshold δ = 0.01Dmax. The square root in eq. (5)
arises because by taking all pairwise distances, the proba-
bility of oscillators k and j both being in the synchronous
cluster is proportional to the square of the number of syn-
chronous oscillators.

Dynamical asymmetry. – We investigate dynamical
asymmetries emerging from the slight structural asymme-
try of the brain hemispheres. Figure 2 shows how the
different measures lead to the observation of a dynamical
asymmetry with respect to the hemispheres of the average
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(a) (b)

(c) (d)

Fig. 2: Asymmetry scenarios in the brain network: (a) mean
phase velocity ωk for each node k (dots) and spatially aver-
aged hemispheric mean phase velocity 〈ω〉H (dashed lines) for
coupling strength σ = ς = 0.7. The color code highlights the
left (dark blue) and right (light orange) hemisphere. The gray
dashed line at ω ≈ 2.4 denotes the mean phase velocity for the
uncoupled system. (b) Numerically calculated critical coupling
strength in the (σ, a)-plane for the transition between incoher-
ence and frequency synchronization using the average brain
network (solid line, σ = ς) and isolated hemispheres (dashed
line, ς = 0). The cross denotes the parameters (σ = 0.7,
a = 0.5) used in panel (a). (c) Hemispheric mean phase veloc-
ities 〈ω〉H as a function of the coupling strength σ = ς, color
code as in panel (a). (d) Difference between left and right
hemispheric mean phase velocity Δω as a function of the cou-
pling strength σ = ς. The difference assumes a maximum at
σ ≈ 0.7. Other parameters: ε = 0.05, a = 0.5, φ = π

2
− 0.1.

empirical structural brain network. Figure 2(a) displays
the node-wise mean phase velocity ωk for an intermedi-
ate coupling strength σ = ς = 0.7 with random initial
conditions. Note that the oscillators split into two visu-
ally well-distinguishable communities that coincide with
the hemispheres of the brain network and have differ-
ent hemispheric mean phase velocities 〈ω〉H . The left
and right hemispheric mean phase velocities 〈ω〉L and
〈ω〉R and their difference Δω vs. σ = ς are displayed
in fig. 2(c) and (d), respectively. The values are calcu-
lated for one hundred different coupling strengths with
0 < σ ≤ 1 and step-size Δσ = 0.01. For every coupling
strength an average over ten simulations with different
sets of random initial conditions is plotted. For coupling
strength σ = ς ≥ 1 the system enters the frequency-
synchronized regime, while phase synchronization mea-
sured by the Kuramoto order parameter sets in only later
at σ = ς ≈ 4.85. Note that frequency synchronization
means that all mean phase velocities ωk are equal, but the
phases may be different, while phase synchronization re-
quires additionally that all phases are the same. It turns
out that the difference Δω assumes a maximum at σ ≈ 0.7
and subsequently decreases again as both hemispheres en-
ter the frequency-synchronized regime. However, these
differences between left and right hemisphere do not imply

(a) (b) (c)

(d) (e) (f)

Fig. 3: Classification of the transition between incoherence and
frequency synchronization by means of the hemispheric mean
phase velocities 〈ω〉H (a)–(c) and their difference Δω (d)–(f)
as a function of the coupling strength σ = ς. In 20 individual
brain networks three transition scenarios are distinguished, dis-
played in panels ((a), (d)), ((b), (e)), and ((c), (f)), respectively,
each scored 10, 7, and 3 times, respectively. Other parameters
are as in fig. 2.

different dynamical regimes in the sense of a partial syn-
chronization pattern consisting of a desynchronized and
a synchronized hemisphere, like in a chimera pattern.
Nevertheless it can clearly be concluded that the net-
work dynamics reflects the slight structural asymmetry.
Figure 2(b) depicts the critical coupling strength for the
transition between incoherence and frequency synchro-
nization for a wider range of parameters in the (σ, a)-plane
by a solid line for the coupled network with σ = ς, and by
a dashed line for the isolated hemispheres (ς = 0). The
additional coupling between the hemispheres leads to a
higher threshold value σc for frequency synchronization.

So far, we have used an averaged empirical matrix to
detect a dynamical asymmetry. For a deeper insight it is
important to consider all twenty available empirical struc-
tural brain networks individually. In all, we observe one
of three transition scenarios from incoherence (0 < σ < 1)
to frequency synchronization (σ > 1 for a = 0.5) with in-
creasing coupling strength, as shown in fig. 3. They are
distinguished by the difference of the hemispheric mean
phase velocities Δω exhibiting either a pronounced sin-
gle maximum (d), or a (negative) minimum followed by
a pronounced maximum (e), or essentially no dynamical
asymmetry at all (f). However, in most cases (17 out of 20)
a dynamical asymmetry was measurable by means of Δω.

In the following we analyze to which extent the dy-
namical asymmetry can be attributed to the structural
asymmetry of the network by introducing a structural
asymmetry parameter ρ with 0 ≤ ρ ≤ 1 that allows for
a continuous tuning between the original structural brain
network and a fully symmetrized network, in the sense
that both hemispheres are identical. We introduce the
coupling matrix elements of a network interpolating be-
tween asymmetric and symmetric hemispheres by

A∗
kj = ρAkj + (1 − ρ)Akj , ρ ∈ [0, 1] (6)

with Akj = 1
2 (Akj + Ak+45,j+45), where all indices are

taken modulo 90. The resulting matrix {A∗
kj} describes

identical hemispheres if ρ = 0 and coincides with the
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(a) (b)

Fig. 4: (a) Hemispheric difference Δω as a function of cou-
pling strength σ = ς and structural asymmetry parameter ρ.
The difference builds up as the structural asymmetry increases.
(b) Dynamical asymmetry parameter W as a function of ρ.
Bars denote the standard deviation error of the mean with re-
spect to 20 different realizations of the initial conditions. Other
parameters are as in fig. 2.

original empirical matrix if ρ = 1. We observe that the
dynamical asymmetry, expressed by the hemispheric dif-
ference of the mean phase velocities Δω, builds up as the
structural asymmetry parameter increases (fig. 4(a)). The
dynamical asymmetry is most pronounced for an interme-
diate coupling strength, not too small, but also not too
close to the threshold of frequency synchronization. By
integrating

W =
∫ 1

0

dσΔω (7)

we obtain a dynamical asymmetry parameter W which
is indeed almost linearly correlated with the structural
asymmetry parameter ρ. The Pearson correlation coeffi-
cient of these two measures is rρ,W = 0.96. The dynami-
cal asymmetry parameter increases linearly with ρ up to a
certain degree of structural asymmetry, but then saturates
and does not increase further. This means that even the
slightest structural asymmetry results already in a slight
dynamical asymmetry, i.e., there is no threshold behav-
ior. However, a slight dynamical asymmetry here does not
induce an immediate symmetry breaking as known from
critical phenomena. The increase of dynamical asymmetry
instead first increases linearly with the structural asymme-
try. Beyond this regime of linear response, the dynami-
cal asymmetry does not increase further if the structural
asymmetry increases beyond a certain degree, and the real
empirical structural asymmetry seems to be just closely
above that value corresponding to saturation of sensitiv-
ity. These results are consistent with our hypothesis that
both unihemispheric and bihemispheric sleep can be pos-
sible dynamical states of the same network.

Partial synchronization. – To achieve partial syn-
chronization patterns we consider the inter-hemispheric
coupling strength ς as an independent parameter that al-
lows us to reduce the coupling between the hemispheres.
This is motivated by the presumption that sleeping with
one hemisphere at a time requires a certain degree of
hemispheric separation [1]. All other parameters remain
unchanged.

We analyze the parameter regime where the previ-
ously used average empirical structural brain network with

(a)

(c) (d)

(b)

Fig. 5: Partial synchronization pattern for σ = 0.70, ς = 0.15
with low and high degree of synchronization in the left ((a), (c))
and right ((b), (d)) hemisphere, respectively. (a), (b): mean
phase velocity profiles ωk. (c), (d) inner panels: space-time
plots of nodewise phase velocity ω1

k averaged over a single os-
cillation; outer panels: hemispheric Kuramoto order parame-
ter RL,R as a function of time t. Other parameters are as in
fig. 2.

identical inter- and intra-hemispheric coupling strength
ς = σ exhibits qualitatively different behavior from that
with separated hemispheres ς = 0, i.e., these two cases cor-
respond to different dynamical regimes. For both cases we
have numerically determined the critical intra-hemispheric
coupling strength σc for which the system engages into the
frequency-synchronized regimes, see fig. 2(b). As ς = 0
leaves us with two disconnected sub-networks, these sub-
networks are naturally easier to synchronize. Note that
these two disconnected sub-networks technically result in
two different critical coupling strengths. However, the dif-
ference between these critical values is very small and thus
negligible. Consider a coupling strength σ that lies within
the shaded area of fig. 2(b). There, a phase transition
with increasing ς must be expected, since the system is
frequency synchronized if ς = 0, and completely incoher-
ent if ς = σ. We find that the frequency-synchronized so-
lution indeed breaks down in one hemisphere. This gives
rise to the partial synchronization pattern shown in fig. 5
where the left hemisphere is incoherent while the right is
frequency synchronized, except for three small brain re-
gions (hippocampus, gyrus parahippocampalis and amyg-
dala). This shows up in the space-time plot, in the mean
phase velocity profile, and in the hemispheric Kuramoto
order parameter (although there is no perfect phase syn-
chronization resulting in RR < 1). Note that the incoher-
ent, left hemisphere occasionally exhibits a high degree of
synchronization that, in contrast to the right hemisphere,
is unstable and vanishes after a short while. In general,
partial synchronization patterns where different dynam-
ical regimes occur in the two hemispheres can be found
whenever a phase transition with respect to ς is expected,
i.e., in the shaded region of fig. 2(b).
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(a)

(b)

Fig. 6: Temporal mean of the spatial correlation coefficient g0

as a function of the intra- and inter-layer coupling strengths σ,
ς in the regime of strong coupling (phase or frequency synchro-
nization). The left and right panels correspond to the left and
right hemisphere, respectively. (a) and (b) depict the two pos-
sible states of the bistable system. Other parameters are as in
fig. 2.

Finally, we analyze the transition from frequency to
phase synchronization which occurs at much higher cou-
pling strengths than shown in fig. 2(b), e.g., for a = 0.5
at σ = ς = 4.8 and at σ = 3.4 for ς = 0. Here we
use the temporal mean of the spatial correlation coef-
ficient g0 that is suitable to distinguish between phase
(g0 = 1), frequency synchronization (g0 < 1), and com-
plete incoherence (g0 = 0). In contrast to the Kuramoto
order parameter R, g0 provides an arbitrary threshold δ
and thereby gives a more pronounced transition from fre-
quency to phase synchronization. Figure 6 shows that in
the (σ, ς)-plane of coupling strengths there exist regimes
where a high degree of phase synchronization in one hemi-
sphere coincides with a low degree of phase synchroniza-
tion in the other (i.e., only frequency synchronization).
Further, we find that the degree of phase synchronization
expressed by g0 may exhibit non-monotonic behavior as a
function of ς. To a certain amount this is expected as we
have seen before that coupling two hemispheres (ς �= 0)
decreases the degree of synchronization, we thus expect
a maximum of g0 at ς = 0. However, in certain regimes
of σ we find a subsequent maximum at ς ≈ 2 which implies
that increasing the coupling between the hemispheres does
not necessarily decrease the degree of phase synchroniza-
tion. Furthermore, we find that this subsequent maximum
is in principle possible in both hemispheres (indicating
bistability, cf. panels (a) and (b)), but is realized by
only one hemisphere at a time. A high degree of phase
synchronization in one hemisphere thus suppresses phase
synchronization in the other. This could be an important
mechanism for the occurrence of unihemispheric sleep and
should be investigated further. It is interesting that the
two hemispheres can exchange their roles as one being

phase synchronized and the other being only frequency
synchronized, depending upon the initial conditions. For
very strong σ and ς complete phase synchronization of
both hemispheres is found (top right corners in fig. 6).

Conclusion. – We have investigated the dynamical
asymmetry arising from the structural difference between
the two brain hemispheres. It has been found that during
the transition from complete incoherence to frequency syn-
chronization an asymmetry regarding the degree of syn-
chronization builds up, which can be quantified by the
different mean phase velocities averaged over each hemi-
sphere. We have shown that this asymmetry can be at-
tributed to the structural asymmetry of the hemispheres,
by introducing an asymmetry parameter which can inter-
polate between the empirical asymmetric brain network
and an artificially symmetrized network. Furthermore,
we have varied the inter-hemispheric coupling strength,
while keeping the intra-hemispheric coupling strength
fixed, to increase the degree of inter-hemispheric separa-
tion, ranging from isolated to fully coupled hemispheres.
This has resulted in the observation of partial synchroniza-
tion patterns similar to spontaneously synchrony-breaking
chimera states. We have demonstrated that these par-
tial synchronization patterns occur for coupling strengths
where the isolated hemispheres are frequency synchro-
nized while the brain network with equal intra- and inter-
hemispheric coupling remains completely incoherent. By
tuning the coupling between the hemispheres we have
shown that at intermediate inter-hemispheric coupling one
hemisphere becomes incoherent, giving rise to a chimera-
like partial synchronization pattern.

These results are in accordance with the assumption
that unihemispheric sleep requires a certain degree of
inter-hemispheric separation. Moreover, it is known that
the brain is operating in a critical state at the edge of
different dynamical regimes [34], exhibiting hysteresis and
avalanche phenomena as seen in critical phenomena and
phase transitions [35–37]. By choosing appropriate cou-
pling parameters, we have reported an intriguing dynam-
ical behavior regarding the transition from frequency to
phase synchronization. We observe that in this regime
our brain model exhibits spontaneous symmetry breaking
and bistability, where each hemisphere may engage into
either of two dynamical states, characterized by a rela-
tively high and low degree of synchronization. However,
a high degree of synchronization in one of the hemispheres
always coincides with a low degree of synchronization in
the other. To sum up, the structural asymmetry in the
brain allows for partial synchronization dynamics, which
may be used to model unihemispheric sleep or explain the
mechanism of the first-night effect in human sleep.
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