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Abstract
Rhythms influence our life in various ways, e.g., through heart beat and respiration, oscillating brain currents, life 
cycles and seasons, clocks and metronomes, pulsating lasers, transmission of data packets, and many others. The 
physics of complex nonlinear systems has developed methods to describe and analyze periodic oscillations and 
their synchronization in complex networks, which are composed of many components. Synchronized oscillations 
as well as completely asynchronous chaotic oscillations play a major role in many networks in nature and technol-
ogy. For instance, the synchronous firing of all neurons in the brain represents a pathological state, like in epilepsy 
or Parkinson’s disease, and should be suppressed, as well as the synchronous mechanical vibration of bridges. On 
the other hand, synchronization is desirable for the stable operation of power grids or in encrypted communication 
with chaotic signals. In networks composed of identical components, intriguing hybrid states (“chimeras”) may 
form spontaneously, which consist of spatially coexisting synchronized and desynchronized domains, i.e., seemingly 
incongruous parts. This might be of relevance in inducing and terminating epileptic seizures, or in unihemispheric 
sleep which is found in certain migratory birds and mammals, or in cascading failures of the power grid.

Zusammenfassung
Rhythmen prägen unser Leben auf vielfältige Weise, z. B. durch Herzschlag und Atmung, oszillierende Gehirnströ-
me, Lebenszyklen und Jahreszeiten, Uhren und Metronome, pulsierende Laser, Übertragung von Datenpaketen, und 
vieles andere. Die Physik komplexer nichtlinearer Systeme hat Methoden entwickelt, wie periodische Schwingungen 
und deren Synchronisation in komplexen Netzwerken, die aus vielen Bestandteilen zusammengesetzt sind, beschrie-
ben und analysiert werden können. Synchronisierte Oszillationen, aber auch völlig desynchronisierte, chaotische 
Oszillationen spielen eine große Rolle in vielen Netzwerken in Natur und Technik. Beispielsweise ist das synchroni-
sierte Feuern aller Neuronen im Gehirn ein pathologischer Zustand, etwa bei Epilepsie oder Parkinson-Erkrankung, 
und sollte unterdrückt werden, wie auch synchrone mechanische Schwingungen von Brücken. Andererseits ist die 
Synchronisation erwünscht beim stabilen Betrieb von Stromnetzen oder bei der verschlüsselten Kommunikation mit 
chaotischen Signalen. In Netzwerken aus identischen Komponenten können sich überraschenderweise auch spontan 
Hybrid-Zustände („Schimären“) bilden, die aus räumlich koexistierenden synchronisierten und desynchronisierten 
Bereichen bestehen, welche scheinbar nicht zusammen passen. Diese könnten relevant sein bei der Auslösung oder 
Beendigung epileptischer Anfälle, oder beim halbseitigen Schlaf einer Gehirnhälfte, der bei bestimmten Zugvögeln 
oder Säugetieren auftritt, oder beim kaskadenartigen Zusammenbruch des Stromnetzes.
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1.	 Synchronization of Rhythms in Complex Networks

Synchronization phenomena in nonlinear dynamical systems (Haken 1983, Pikovsky et 
al. 2001, Mosekilde et al. 2002, Haken 2008, Balanov et al. 2009, Schöll et al. 2016, 
Boccaletti et al. 2018) are of great importance in many areas ranging from physics and 
chemistry to biology, neuroscience, socio-economic systems, and engineering. Probably the 
first example was given by Christiaan Huygens (1629 –1695), who observed that while two 
individual pendulum clocks show slightly deviating times, they spontaneously synchronize 
at exactly the same frequency if they are weakly coupled via a wooden beam (Fig. 1). Even 
if individual systems, e.g., semiconductor lasers, exhibit chaotic dynamics, they may sponta-
neously synchronize their chaotic time series if coupled (Soriano et al. 2013).
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 Fig. 1  Christiaan Huygens (1671) and his sketch of the two coupled pendulum clocks which he observed to synchro-
nize spontaneously. (After Huygens 1932.)
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Synchronization of rhythms is also observed generally if more than two oscillating elements 
are coupled in a network, even for large and complex networks. Complex networks are a 
ubiquitous paradigm in nature and technology, and a central issue in nonlinear science with 
applications to different fields ranging from natural to technological and socio-economic 
systems (Fig. 2). The interplay of nonlinear dynamics, network topology, naturally arising 
delays, and random fluctuations results in a plethora of spatio-temporal patterns (Schöll et 
al. 2016).
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Fig. 2  Complex networks exist in many diverse fields: (A) brain, (B) internet, (C), (D) power grids (panel D shows 
the high-voltage power grid of Germany [Taher et al. 2019]), (E) social network.

There exist many applications of synchronization in various nonlinear systems, and so-
metimes synchrony is desirable, whereas sometimes it may be undesirable. Synchronization 
of lasers with chaotic dynamics, for instance, may lead to new secure communication sche-
mes (Cuomo and Oppenheim 1993, Boccaletti et al. 2002, Argyris et al. 2005, Kanter et 
al. 2008). The London Millenium Bridge was opened in the year 2000, but had to be closed on 
the same day, after pedestrians experienced an alarming lateral swaying motion, and it took 
almost two years while modifications and repairs were made to keep the bridge stable. The 
instability was explained by a simple network model leading to spontaneous collective crowd 
synchronization at a critical density of the pedestrians streaming onto the bridge (Strogatz 
et al. 2005). Synchronization of power grids to the nominal frequency of 50 Hz is essential 
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for their stable operation (Motter et al. 2013, Tumash et al. 2019, Taher et al. 2019). The 
synchronization of neurons (Vicente et al. 2008) is believed to play a crucial role in the brain 
under normal conditions, for instance in the context of memory, cognition and learning (Sin-
ger 1999), and under pathological conditions such as Parkinson’s disease (Tass et al. 1998) or 
epilepsy (Andrzejak et al. 2006, Jiruska et al. 2013, Jirsa et al. 2014). Fireflies are known 
to synchronize their flashing (Buck and Buck 1968). Especially in biology, rhythms and bio-
logical clocks play an important role and have given the name to a whole discipline, namely 
chronobiology (Peschke 2011), see also the Abstracts by Jessica Grahn, Steve Kay, and 
Russell Foster, in this Meeting. Examples are the circadian rhythms in single-cell organisms, 
plants, fruit flies, mammals, and humans; the high relevance of chronobiology is documented 
by the award of the 2017 Nobel Prize for Physiology or Medicine to Jeffrey C. Hall, Michael 
Rosbash, and Michael W. Young for their discoveries of molecular mechanisms controlling 
the circadian rhythm.

In many realistic dynamical networks time delay effects are a key issue (Just et al. 2010, 
Flunkert et al. 2013, Schöll 2013). For example, the finite propagation time of light bet-
ween coupled semiconductor lasers (Wünsche et al. 2005, Carr et al. 2006, Erzgräber 
et al. 2006, Fischer et al. 2006, D’Huys et al. 2008, Soriano et al. 2013) significantly in-
fluences the dynamics on networks. Similar effects occur in neuronal (Rossoni et al. 2005, 
Masoller et al. 2008, Schöll et al. 2009) and biological gene expression networks (Tiana 
and Jensen 2013) due to signal processing and propagation delays. Time delay has two com-
plementary, counterintuitive and almost contradicting facets. On the one hand, delay is able 
to induce instabilities, generate new dynamical behavior, e.g. periodic and quasiperiodic time 
evolution, multistability and chaotic motion. On the other hand, delay can suppress instabi-
lities, stabilize unstable stationary or periodic states and may control deterministic chaos. 
Both facets open up efficient methods of designing and controlling nonlinear dynamics by 
time-delayed feedback (Schöll and Schuster 2008, Sun and Ding 2013).

There exist different forms of synchronization, i.e., complete or isochronous (zerolag) 
synchronization, generalized synchronization (where the oscillations of the individual ele-
ments of the network are not identical, but functionally related), phase synchronization (whe-
re only the phases but not the amplitudes of the oscillations are synchronized), cluster or 
group synchronization (Sorrentino and Ott 2007, Dahms et al. 2012, Williams et al. 2013, 
Taylor et al. 2011, Nkomo et al. 2013) (where within each cluster all elements are comple-
tely synchronized, but between the clusters there is a phase lag), and many other forms. Some 
progress has been made in generalizing this work, for instance, towards adaptive networks 
(Lehnert et al. 2014, Kasatkin et al. 2017, Berner et al. 2019a, b, 2020) (where the strength 
of the links is adapted dynamically), inhomogeneous local dynamics (Sorrentino and Pe-
cora 2016) and heterogeneous delay times (Cakan et al., 2014), distributed (Kyrychko et 
al. 2014, Wille et al. 2014), state-dependent, or time-varying delays (Gjurchinovski et al. 
2014). In general, the stability of synchronization in delay-coupled networks of oscillators 
depends in a complicated way on the local dynamics of the nodes and the coupling topology. 
However, for large coupling delays synchronizability relates in a simple way to the spectral 
properties of the network topology, characterized by the eigenvalue spectrum of the coupling 
matrix. The master stability function (Pecora and Carroll 1998) used to determine the 
stability of synchronous solutions has a universal structure in the limit of large delay: it is ro-
tationally symmetric and monotonically increasing. This allows for a universal classification 
of networks with respect to synchronization properties (Flunkert et al. 2010). For smaller 
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coupling delays the synchronization properties depend in a more subtle way upon the local 
dynamics, and the details of the network topology. Various cluster synchronization states, 
where certain clusters inside the network show isochronous synchronization, can be realized 
by tuning the coupling parameters, i.e., the coupling constant which is a complex number 
with an amplitude (coupling strength) and a phase (coupling phase), and the coupling delay 
which describes the propagation time of the signals coming from the other nodes (Choe et 
al. 2010, Dahms et al. 2012). To find appropriate values of these control parameters, the 
speed-gradient method from control theory can be applied to achieve a desired state of gene-
ralized synchrony (adaptive synchronization) (Selivanov et al. 2012). Transitions between 
synchronization and desynchronization can be induced by introducing inhibitory links into 
an excitable regular network with a probability p in a small-world like fashion, and changing 
the balance between excitatory and inhibitory links (Lehnert et al. 2011, Keane et al. 2012). 
Here inhibitory means that the individual element is inhibited by the coupling from the other 
elements of the network, i.e., the coupling term has a negative sign, whereas excitatory means 
that the coupling term has a positive sign.

2.	 Partial Synchronization and Chimera States

Recent research interest has focussed on more complex partial synchronization patterns, whe-
re the whole system is not completely in synchrony, but only parts of it have the same phase 
and frequency. These synchronization patterns may include clusters of self-sustained syn-
chronized oscillations with different phase between the clusters, or desynchronized parts, or 
other parts where the oscillations are quenched (oscillation death or amplitude death).

An intriguing example of partial synchronization patterns, which has recently gained 
much attention, are chimera states, i.e., symmetry-breaking states of partially coherent and 
partially incoherent behavior. Chimera states in dynamical networks consist of spatially se-
parated, coexisting domains of synchronized (spatially coherent) and desynchronized (spa-
tially incoherent) dynamics. They are a manifestation of spontaneous symmetry-breaking 
in systems of identical oscillators, and occur in a variety of physical, chemical, biological, 
neuronal, ecological, technological, or socio-economic systems. A schematic representation 
is given in Figure 3, which shows a snapshot in time of the state variable, e.g., the oscillator 
phase, versus the space variable which labels the different oscillators of the network, e.g., 
their position on a ring network, for three different dynamical states. In the left panel, all 
oscillators are synchronized, i.e., they have the same phase (coherence). In the right panel, all 
oscillators are desynchronized, i.e., neighboring oscillators have completely random phases 
(incoherence). In the middle panel, a chimera state is depicted which consists of a central 
domain of desynchronization and a surrounding domain of synchronization. Since the space 
position is marked on a ring network, the left and the right border of the panel correspond to 
the same position, i.e., they coincide.

Kuramoto and co-workers discovered the chimeras in a ring network of phase oscillators 
with a simple symmetric non-local coupling scheme (Kuramoto and Battogtokh 2002). 
Within these “classical” chimera states, coherent domains of periodic in-phase oscillations 
coexist with incoherent domains, characterized by chaotic behavior in time and space. In 
Greek mythology, the chimera is a fire-breathing mythical creature with a lion’s, a goat’s, and 
a snake’s head. The middle inset of Figure 3 shows the Etruscan Chimera di Arezzo (400 BC), 
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on display in the National Archeological Museum in Florence. As the counterintuitive dyna-
mical chimera state is also composed of incongruous parts, it was named after the beast by 
Abrams and Strogatz (2004). Kuramoto’s finding initiated a broad wave of theoretical and 
numerical investigations (Motter 2010, Panaggio and Abrams 2015, Schöll et al. 2020). 
However, only one decade after their theoretical discovery in computer simulations were the 
first lab experiments on chimeras reported simultaneously in optical light modulators (Hager-
strom et al. 2012) and chemical oscillators (Tinsley et al. 2012), followed by experiments 
with mechanical (Martens et al. 2013, Kapitaniak et al. 2014), electronic or optoelectronic 
oscillators (Larger et al. 2013, 2015), electrochemical systems (Wickramasinghe and Kiss 
2013, 2014, Schmidt et al. 2014), and electronic circuits (Gambuzza et al. 2014, Rosin et al. 
2014). Theoretical studies have found chimeras also in various other systems and for com-
plex topologies. These include time-discrete maps (Omelchenko et al. 2011, Semenova et al. 
2015) and time-continuous chaotic models (Omelchenko et al. 2012), and Boolean networks 
(Rosin et al. 2014). Chimeras were found in a variety of different dynamic models: the Stu-
art-Landau model (Zakharova et al. 2014), the Van-der-Pol oscillator (Omelchenko et al. 

 

 
  

Fig. 3  Scenario from coherence to incoherence: Schematic sketch of snapshot of a chimera state (middle panel) 
compared to completely synchronized (coherent) state (left panel) and completely desynchronized (incoherent) state 
(right panel). The state variable, e.g., oscillator phase, is shown versus space (position of the oscillators). In the midd-
le panel the widely dispersed dots in the center correspond to the desynchronized domain, while the solid lines at the 
edges correspond to the synchronized domain of the chimera. Due to periodic boundary conditions on a ring network, 
the left and the right border of each panel correspond to the same position on the ring. The inset shows the Chimera 
di Arezzo (400 BC) from the National Archeological Museum in Florence, which gave the name to chimera states.
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2015b), the FitzHugh-Nagumo neural model (Omelchenko et al. 2013, 2015a), and systems 
of type-I excitability (Vüllings et al. 2014), as well as in globally coupled lasers (Böhm et al. 
2015), in population dynamics (Hizanidis et al. 2015, Banerjee et al. 2016), and in quantum 
oscillator systems (Bastidas et al. 2015). In real-world systems chimera states might play a 
role, e.g., in power grids (Motter et al. 2013), in social systems (Gonzalez-Avella et al. 
2014), or in the unihemispheric sleep of birds and dolphins (Rattenborg et al. 2000, 2016), 
where some migratory birds and sea mammals sleep with one half of their brain, while the 
other half remains awake, and the two hemispheres switch spontaneously, and in epileptic 
seizures (Rothkegel and Lehnertz 2014, Andrzejak et al. 2016), which are characterized 
by excessive synchrony and may be initiated or terminated by transient brain states of partial 
high synchronization, i.e. chimeras.

Usually, both the chimera state and the completely synchronized state are stable for 
perturbations within a certain neighborhood region in phase space, which is called the basin 
of attraction of the respective state. Typically, the basin of attraction of the chimera state is 
relatively small compared to that of the synchronized state. This explains why they were not 
detected for a long time. By choosing appropriate initial conditions, one can secure that the 
system is asymptotically attracted to the chimera state and not to the completely synchronized 
state. An interesting feature of the chimera states is that they are often long living transients 
towards the in-phase synchronized oscillatory state. By this, the coupling between the oscilla-
tors introduces a time scale much larger than the oscillation periods of each single oscillator. 
It was theoretically predicted (Wolfrum and Omel’chenko 2011) and experimentally con-
firmed (Rosin et al. 2014) that the lifetime of the chimera states of phase oscillators grows 
exponentially with the system size. This illustrates impressively that they are not simply a 
temporary trace of the initial conditions, but are a persisting phenomenon.

Recently, the investigation of chimera states has been generalized towards networks of 
elements which have more complicated local dynamics (Panaggio and Abrams 2015, Böhm 
et al. 2015, Omelchenko et al. 2015b). In particular, nodes which involve not only phase 
but also amplitude dynamics are considered. As described in Sethia et al. (2013) and Sethia 
and Sen (2014), in such systems amplitude-mediated chimeras can be found, which show a 
chimera behavior with respect to the phases as well as with respect to the amplitudes. Ano-
ther type of chimera states is characterized by strictly correlated phase dynamics throughout 
the whole network, but coexisting domains of coherent and incoherent amplitude dynamics. 
These amplitude chimeras were first described in ring networks by Zakharova et al. (2014). 
A crucial difference to classical phase chimeras is that the spatial incoherence does not imply 
chaotic behavior in time. In fact, all nodes of an amplitude chimera perform periodic oscil-
lations, but in the incoherent domain the spatial sequence of the positions of the centers of 
oscillation is completely random. It has been noted (Tumash et al. 2017) that amplitude chi-
meras are long living transients, and their lifetime and their robustness with respect to noise 
was investigated in detail in Loos et al. (2016). It has been shown that the chimera lifetime 
can be effectively tuned by adding a simple symmetric proportional control term (Sieber et 
al. 2014), and that the chimera position can be stabilized by an asymmetric feedback loop 
(Bick and Martens 2015). Both control schemes have been combined in a double-feedback 
control which is composed of two parts, a symmetric and an asymmetric one (Omelchenko 
et al. 2016). Since this is, in an abstract sense, similar to the two levers of a pair of tweezers, 
it has been named tweezer control and it was shown to be able to stabilize chimeras in very 
small networks (Omelchenko et al. 2016, 2018, 2019). Noise-induced chimera effects like 
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stochastic resonance of chimeras (Semenov et al. 2016) or coherence resonance chimeras 
(Semenova et al. 2016) have also been studied.

An important extension of the topology are multilayer networks where the nodes are dis-
tributed in different layers. One of the most promising applications of the multilayer approach 
is the study of the brain, where the neurons can form different layers. A special case of mul-
tilayer networks are multiplex topologies, where each layer contains the same set of nodes, 
and only pairwise connections between corresponding nodes from neighbouring layers exist. 
In particular, remote (or relay) synchronization in multilayer networks between parts of one 
layer and their counterparts in a second layer, where these two layers are not directly connec-
ted, has recently provoked much interest (Leyva et al. 2018). A simple realization of such a 
system is a triplex network where a relay layer in the middle, which is generally not synchro-
nized, acts as a transmitter between two outer layers. It has been shown that the three-layer 
structure of the network allows for synchronization of the coherent domains of chimera states 
in the first layer with their counterparts in the third layer, whereas the incoherent domains 
either remain desynchronized or synchronized (Sawicki et al. 2018). In neuroscience various 
scenarios have been uncovered where specific brain areas act as a functional relay between 
other brain regions, having a strong influence on signal propagation, brain functionality, and 
dysfunctions (Roelfsema et al. 1997, Soteropoulos and Baker 2006). For instance, the 
relay cells of the thalamus serve both as the primary relay of sensory information from the 
periphery to the cortex and as an interactive hub of communication between cortical areas 
(Sherman 2016, Rhodes and Llinas 2005, Guillery and Sherman 2002, Gollo et al. 
2010). They enable visual processing (Wang et al. 2011) and rapid coordination of spatially 
segregated cortical computations important for cognitive flexibility, cognitive control and its 
perturbation in disease states (Halassa and Kastner 2017). Parahippocampal regions can 
be considered as relay stations, which actively gate impulse traffic between neocortex and 
hippocampus, with strong implications for the propagation of neural activity (de Curtis and 
Paré 2004]. The hippocampus also acts as a relay in the cortico-cortical theta synchronization 
(Fischer et al. 2006, Gollo et al. 2011); signal transmission between cortical and subcor-
tical brain regions is involved in a wide range of brain functions (Prasad and Chudasama 
2013). Especially partial relay synchronization plays an important role in experiments with 
mice (Gollo et al. 2011), where just a part of the hippocampal relay exhibits phase-lag syn-
chronization with the two cortical regions, which between themselves exhibit partial zero-lag 
synchronization. The computer simulations (Sawicki et al. 2018) might help in elucidating 
complex scenarios of information processing in the brain, and explain hitherto unexplained 
experiments on imperfect synchronization in the mice brain (Gollo et al. 2011) by novel 
scenarios of partial relay inter-layer synchronization.

3.	 Application to Neurodynamics

Neuroscience offers important applications for chimera states, as mentioned above. Here we 
review recent computer simulations of chimera states in neuronal networks of FitzHugh-Na-
gumo (FHN) oscillators (FitzHugh 1961, Nagumo et al. 1962) with a particular emphasis 
on complex network topologies. The FHN system is a paradigmatic model of excitable dyna-
mics, whose relevance is not limited to neuroscience, but also includes chemical (Shima and 
Kuramoto 2004) and optoelectronic (Rosin et al. 2011) oscillators and nonlinear electronic 
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circuits (Heinrich et al. 2010). Excitable dynamics is characterized by a stable steady state, 
from which the system can be excited by a sufficiently large perturbation which takes the 
system across a threshold and leads to the emission of a single spike before returning to the 
stable steady state (recovery phase). Note that while the FHN model was originally invented 
to describe a single neuron in terms of the membrane potential u and the recovery variable 
v which models the negative linear feedback leading to recovery after electrical excitation, 
it is also often used as a generic model for excitable media on a coarse-grained level. The 
FHN model then describes neural areas by two simple differential equations for an activator 
variable (the membrane potential) and an inhibitor variable (recovery variable). Usually, the 
activator exhibits fast dynamics, while the inhibitor displays slow dynamics.
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Fig. 4  Intuitive illustration of the FitzHugh-Nagumo (FHN) model of excitable dynamics. (A) Phase portrait of the 
activator variable u(t) versus the inhibitor variable v(t). The stable steady state (point A) is given by the intersection 
of the red vertical line and the red curve (graph of a cubic function). The red arrows schematically indicate the dy-
namic flow, i.e., the fast temporal dynamics in the phase plane (u(t), v(t)). A sufficiently strong perturbation from the 
steady state A takes the system along the green line fast to point B, then slowly along the red cubic curve to point C 
(excitation phase), then fast to point D, and finally the system slowly returns to the steady state A. (B) Correspon-
ding excitation pulse A-B-C-D of the activator variable u(t) (blue) versus time t. The magenta time trace shows the 
associated inhibitor variable v(t).

An intuitive understanding of excitable dynamics can be gained from Figure 4. In the excitab-
le regime, the activator variable shows a rapid increase (activation of the membrane potential) 
from A to B, initiating an excitation pulse, lasting up to point B, while the inhibitor inhibits 
the increase of the activator and leads back via C and D to the stable steady state A (green 
cycle in Fig. 4A). Thus, upon sufficiently strong perturbation, exactly one electrical pulse is 
emitted (blue trace in Fig. 4B). Here we consider a network of N coupled FHN oscillators 
(Omelchenko et al. 2013, 2015a) where uk and vk, k = 1, ..., N are the activator and inhibitor 
variables, respectively. For the mathematical description via a system of 2N ordinary diffe-
rential equations see Appendix A. The important feature is that the equations contain not only 
direct u–u and v–v couplings, but also cross-couplings between activator (u) and inhibitor (v) 
variables, and that the coupling between the oscillators is not only to the nearest neighbors, 
but also to some more distant nodes of the network.

First, we consider a one-dimensional ring topology of N nonlocally coupled FHN oscilla-
tors, where each element is coupled to R neighbors on either side (Omelchenko et al. 2013). 

A B
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It is convenient to consider the ratio r = R/N, called coupling radius, which ranges from 1/N 
(nearest-neighbor coupling) to 0.5 (all-to-all coupling). The form of the coupling is inspired 
from neuroscience, where strong interconnections between different neural areas are often 
found within a range R, but fewer connections exist at longer distances. We approximate this 
feature by constant coupling with a strength σ > 0 within the R nearest neighbors from both 
sides, and vanishing coupling at longer distances. As shown in Omel’chenko et al. (2010) 
und Omelchenko et al. (2013), chimera states can be generically found if the activator-in-
hibitor cross-coupling is much stronger than the direct activator-activator and inhibitor-in-
hibitor coupling. Figure 5(A) shows a snapshot of the variables uk at time t = 5000. One can 
clearly distinguish coherent and incoherent parts, a characteristic signature of chimera states. 
Elements that belong to the incoherent part are scattered along the red cycle (see Fig. 5B), 
which is similar to the green cycle of a single FHN oscillator (in Fig. 4A). The subsystems of 
this region perform a nonuniform rotational motion, but neighboring oscillators are not pha-
se-locked. To illustrate this, Figure 5(C) shows the mean phase velocities for each oscillator 
calculated as ωk = 2πMk/∆T, k = 1, ..., N, where Mk is the number of complete rotations along 
the cycle performed by the k-th oscillator during the time interval ∆T. The values of ωk lie on 
a continuous curve and the interval of constant ωk corresponds to the coherent region, where 
neighboring elements are phase-locked. This phase velocity profile is a clear indication of 
chimera states and similar to the case of coupled phase oscillators (Kuramoto and Battog-
tokh 2002, Abrams and Strogatz 2004).

The spatial coherence and incoherence of the chimera state can be characterized by a 
real-valued local order parameter (Wolfrum et al. 2011, Omelchenko et al. 2011) which 
measures the degree of synchrony. It is close to one if neighboring oscillators are in synchro-
ny (coherent domain of the chimera), and less than one if they are not (incoherent domain 
of the chimera). Figure 5(D) depicts the local order parameter in the time interval t ∈ [1000, 
5000], where bright yellow color denotes the coherent regions, and dark blue indicates the 
incoherent domain of the chimera.

Next, we consider fractal network topologies (Omelchenko et al. 2015a). The study of 
different fractal architectures in the neuron connectivity is motivated by magnetic resonance 
imaging (MRI) results of the brain structure which show that the network comprising the axons 
of the neurons spans the brain area fractally and not homogeneously (Katsaloulis et al. 2009, 
Expert et al. 2011, Katsaloulis et al. 2012). In the remainder of this section the word ‘fractal’ 
will be employed to denote mainly hierarchical structures of finite orders n, since the human 
brain has finite size and does not cover all orders, n → ∞ (as in the exact definition of a frac-
tal set). The fractal connectivity dictates a hierarchical ordering in the distribution of neurons 
which is essential for the fast and optimal handling of information in the brain.

Simple one-dimensional fractal structures can be constructed using the classic Cantor con
struction process (Fig. 6). Starting with a base pattern (initiation string) containing b symbols 
(0’s or 1’s) we iterate it n times and thus obtain systems of size N = bn. By closing this string bn 
of symbols in a ring we construct a hierarchical connectivity matrix considering that the symbol 
1 denotes the existence of a link, while the symbol “0” denotes the absence of a link.

In this way a connectivity matrix of size N = bn is constructed, which contains a hierarchi-
cal distribution of gaps with a variety of sizes. The number of times the symbol “1” appears 
in the base pattern, denoted by c1, defines formally the fractal dimension df of the structure, 
as df = lnc1/lnb. This measure df describes perfectly the fractal structure when the number of 
iterations n → ∞. The construction of the fractal connectivity is illustrated in Figure 6 for the 
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simple case b = 3 and n = 3 with the base pattern 101. In the following computer simulations 
in Fig. 7 we use more complex base patterns with b = 6 and n = 4 giving a total size of the 
network N = b4 = 1296 nodes.

In Figure 7(A) the calculations are performed with c1 = 3. The connectivity matrix is very 
sparse and has a fractal dimension df = ln3/ln6 = 0.6132. In the n = 4 iteration it contains 
only cn

1 = 34 = 81 links of each element with the others, each element failing to link with the 
remaining bn – cn

1 = 1215 elements. The links are mostly isolated while the gaps cover most 
of the structure. A multi-chimera with multiplicity 8 and clearly identified coherent/incohe-
rent parts is observed. This result agrees with previously published works indicating that the 
multiplicity of a chimera state is high when the number of links in the ring network is small 
(Omelchenko et al. 2013, Zakharova et al. 2014, Omelchenko et al. 2015b).

In Figure 7(B) the number of links is increased to c1 = 4. The connectivity matrix has a 
fractal dimension df = ln4/ln6 = 0.7737 and each element is connected to cn

1 = 256 others. 
Here, the chimera represents a nested structure, containing 10 coherent/incoherent regions 
clustered into two parts. The two incoherent parts show a substructure consisting of five clo-
sely packed incoherent regions. The two clusters are separated by large coherent regions. In 
Figure 7(C) we consider the value of c1 = 5. Now each element is coupled with cn

1 = 54 = 625 
elements. The incoherent parts seem to merge into a 1-chimera, but the calculation of the 
phase velocity demonstrates that this single incoherent region has a substructure with three 
maxima. In conclusion, for a hierarchical topology the chimera state shows nested complex 
incoherent patterns. Similar chimera patterns have also been found in models using other ty-
pes of dynamics than the FitzHugh-Nagumo model (Hizanidis et al. 2015, Tsigkri-DeSmedt 
et al. 2017, Ulonska et al. 2016, Sawicki et al. 2017).

Fig. 5  Computer simulation of a chimera state: (A) Snapshot of the activator variables uk for t = 5000, (B) snapshot 
in the (uk,vk)-plane for t = 5000 (black lines correspond to the red curves in Fig.4a, called nullclines), (C) mean phase 
velocities ωk, (D) local order parameter Zk. Parameters: N = 1000, ε = 0.05, a = 0.5, r = 0.35, σ = 0.1, φ = π/2−0.1. 
Initial conditions are randomly distributed on the circle u2 + v2 = 4. (After Omelchenko et al. 2013).
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Fig. 6  Construction of the fractal network connectivity for b = 3, n = 3 with the base pattern 101, and hierarchical 
steps m = 1, 2, 3. Black blocks highlight the symbols 1, which are replaced by the base pattern in the next iteration; 
the symbols 0 are replaced by blocks of 0 of the corresponding base pattern length (three in the present case). Light 
gray panels show the corresponding row of the adjacency matrix for each hierarchical step, excluding the first (refe-
rence) node. The bottom panel depicts the obtained coupling schemes for m = 1, 2, 3. The reference node is marked 
red, it is coupled to nodes marked blue. The scheme is valid for each node of the network, correspondingly. Note the 
systematic dilution of the connectivity with increasing hierarchical step. (After zur Bonsen et al. 2018).

Fig. 7  Computer simulation of a chimera state with fractal connectivities: Snapshots of the activator variable uk 
(left column) and corresponding mean phase velocities ωk (right column) for different fractal connectivity mat-
rices. The fractal dimensions of the connectivity structures are: (A) df = ln3/ln6 = 0.6132 (base pattern: 100101),  
(B) df = ln4/ln6 = 0.7737 (base pattern: 101110) and (C) df = ln5/ln6 = 0.8982 (base pattern: 110111). Parameters:  
N = 64 = 1296, σ = 0.3 and other parameters as in Fig. 5. (After Omelchenko et al. 2015a.)
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4.	 Simulation of Epileptic Seizures

In this section, we apply the FitzHugh-Nagumo model to simulate epileptic seizures (Chou-
zouris et al. 2018). During an epileptic seizure the electrical activity in the brain is excessive 
and synchronous, and studying chimera states can give further insight into the underlying me-
chanisms of the initiation or termination of epileptic seizures. We simulate the transition from 
asynchronous behaviour (healthy state) to synchrony (epileptic seizure) via chimera states for 
an empirical structural brain network, which has some similarity with a mathematically con-
structed network with two-dimensional modular fractal connectivity (Krishnagopal et al. 
2017). To describe the dynamics of individual units, we use the paradigmatic FitzHugh-Na-
gumo oscillator as in the previous section. The empirical structural neural connectivity Akj 
was obtained from diffusion-weighted magnetic resonance imaging data (Melicher et al. 
2015) measured in a human brain divided into 90 cortical and subcortical regions according 
to the Automated Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al. 2002), each 
region corresponding to a node in the network. To provide insight into the nature of the 
real brain connectivities we have also compared our computer simulations with an artificial 
connectivity matrix constructed by a well-defined iterative mathematical algorithm genera-
ting a two-dimensional modular fractal connectivity (Chouzouris et al. 2018).

For the characterization of the spatial structure of the obtained patterns, we use the global 
Kuramoto order parameter which is defined in a similar way as the local order parameter shown 
in Figure 5D, albeit it does not measure the synchrony only in a small local neighborhood, but 
involves averaging over the whole network. For a mathematical definition see Appendix C. 
 The global order parameter r varies between 1 and 0, and r = 1 corresponds to the completely 
synchronized state in the system. Small values denote spatially desynchronized states.

Chimera states, which we observe for small values of the coupling strength σ both in net-
works with empirical structural connectivity, and networks with modular fractal connectivity, 
have a complex spatial structure due to the complexity of the network topologies and the ab-
sence of natural spatial ordering, in contrast to ring networks as studied in the previous section.

For the empirical network dynamics qualitatively similar to the dynamics of epileptic 
seizures can be computed. Spontaneous or driven high coherence events occur, indicating pa-
thological seizure behavior. In Figure 8(A) an example of such a spontaneous event is given. 
The temporal evolution of the global order parameter r(t) for a chimera state at fixed parame-
ter values is shown. The temporal mean of the order parameter is ‹r› ≈ 0,5, and longer events 
of high coherence spontaneously occur. Before the high coherence event, a drop of the order 
parameter can be noticed, while the highest value of r is obtained right before its collapse. 
Both effects have been observed in the study of synchrony in epileptic seizures (Mormann et 
al. 2003, Jiruska et al. 2013), while a decrease of order preceding complete synchronization 
has been observed by Andrzejak et al. (2016) in a ring of nonlocally coupled phase oscilla-
tors. The high coherence events can be controlled by the coupling strength σ; strong coupling 
in the regime of chimera states increases their probability of occurrence. Furthermore, as 
shown in Figure 8(B), changing the coupling can induce switching between the chimera and 
the strongly synchronized state, which controls the pathological dynamics. It is interesting to 
note that the system needs some time to respond to modified coupling strength and the high 
synchronization event persists for some time, even after the coupling is changed back to its 
initial value. For more detailed computer simulations and comparison with recorded EEG 
data see Gerster et al. (2020).
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5.	 Simulation of Unihemispheric Sleep

In this section we apply the FitzHugh-Nagumo model with the same empirical structural 
connectivity as in the previous section to study the phenomenon of unihemispheric sleep 
(Ramlow et al. 2019). We show that the dynamical asymmetry of the two brain hemispheres, 
induced by the natural structural asymmetry, can be enhanced by introducing the inter-he-
mispheric coupling strength as a control parameter for partial synchronization patterns. We 
discuss a minimum model elucidating the modalities of unihemispheric sleep in human brain, 
where one hemisphere sleeps while the other remains awake.

A well-known phenomenon in nature is unihemispheric slow-wave sleep, exhibited by 
aquatic mammals including whales, dolphins and seals, and multiple bird species.

 

8 
 

 
 

      

   

Fig. 8  Computer simulation of epileptic seizures with empirical structural connectivity: Temporal evolution of the 
global Kuramoto order parameter r shown in blue for the network with a = 0.5, N = 90. The coupling strength σ is 
shown in red. (A) Chimera state, constant coupling strength σ = 0.6; (B) controlled dynamics: coupling strength σ = 
0.6 is increased to the value σ = 0.7 and kept fixed for the time interval 650 < t/2×104 ≤ 1350, followed by decrease 
back to σ = 0.6, this causes the transitions between the chimera state and strongly synchronized states. (After Chou-
zouris et al. 2018.)

Unihemispheric sleep is the remarkable ability to engage in deep (slow-wave) sleep with a 
single hemisphere of the brain while the other hemisphere remains awake (Rattenborg et 
al. 2000, 2016, Mascetti 2016). Interestingly, sleep and wakefulness are characterized by 
a high and low degree of synchronization, respectively (Rattenborg et al. 2000). Sleep is 
associated with specific synchronized oscillations, i.e., sleep spindles and slow oscillations in 
the thalamocortical system (Steriade et al. 1993). In addition, arousal- and sleep-promoting 
neural assemblies undergo collective activity resulting in secretion of sleep-regulating neu-
rotransmitters (Schwartz and Roth 2008). While the synchronization processes can differ 
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between adults and children (Spiess et al. 2018), transitions from wakefulness to sleep are 
widely accompanied by synchronization phenomena (Moroni et al. 2012).

In the human brain the first-night effect, which describes troubled sleep in a novel en-
vironment, has been related to asymmetric dynamics recently, i.e., a manifestation of one 
hemisphere of the brain being more vigilant than the other (Tamaki et al. 2016). Sleep is a 
dynamical macrostate of the brain that is observed over a wide range of animal species. Sleep 
is accompanied by a loss of consciousness and conscious perceptions, and muscle activity is 
reduced or absent. Sleep alternates between rapid-eyemovement (REM) and non-REM sta-
ges N1, N2, N3, where the latter are dominated by slow oscillations (1 Hz and below) which 
can also emerge locally (Vyazovskiy et al. 2011, Lesku et al. 2011). Sleep stage switching 
dynamics includes wake/sleep asymmetric stochasticity (Scammell et al. 2017), but obeys an 
underlying control by regulatory circuits forming bistable biological flipflop switches (Saper 
et al. 2001, Fuller et al. 2006, Saper et al. 2010, Brown et al. 2012), and sleep regulation 
is coupled to the sleep oscillations of the thalamocortical system (Schellenberger Costa 

 
 

 

  

Fig. 9  Human brain regions from the Automated Anatomic Labeling (AAL) atlas (Tzourio-Mazoyer et al. 2002), 
which are used as nodes in the brain network incorporated in the following computer simulations.
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et al. 2016). While most animals follow a similar qualitative sleep pattern and fall into sleep 
with both hemispheres, in certain bird and mammal species sleep can be unihemispheric 
(Mascetti 2016).

It has been speculated that unihemispheric sleep is related to the spontaneous symmetry-
breaking phenomenon of chimera states in oscillator networks (Abrams et al. 2008, Motter 
2010).

While the neurophysiological processes that ensure the existence of this dynamical state 
of unihemispheric sleep remain largely unknown, it is presumed that a certain degree of struc-
tural interhemispheric separation is a necessary condition for this pattern to persist. Therefo-
re, we propose to model unihemispheric sleep by a two-community network of the two hemi-
spheres where the inter-hemispheric coupling strength is smaller than the intra-hemispheric 
coupling. We model the spiking dynamics of the neurons by the paradigmatic FitzHugh-Na-
gumo model, and investigate possible partial synchronization patterns (Ramlow et al. 2019).

We consider the same empirical structural brain network as in the previous section (Chou-
zouris et al. 2018), shown in Figures 9 and 10, where every region of interest is modeled by 
a single FitzHugh-Nagumo oscillator.

The brain network was obtained from diffusion-weighted magnetic resonance imaging 
data measured in healthy human subjects (Melicher et al. 2015). The data were analyzed 
using probabilistic tractography as implemented in the FMRIB Software Library, where FM-
RIB stands for Functional Magnetic Resonance Imaging of the Brain. The anatomic network 
of the cortex and subcortex is measured using Diffusion Tensor Imaging and subsequently di-
vided into 90 predefined regions according to the Automated Anatomical Labeling (AAL) at-
las (Tzourio-Mazoyer et al. 2002). Each node of the network corresponds to a brain region. 
Indirect information of the white matter fibers connecting different brain regions is provided 
by diffusion-weighted Magnetic Resonance Imaging (dMRI) measuring the preferred diffu-
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Fig. 10  Model for the hemispheric brain structure: (A) Weighted coupling matrix Akj of the averaged empirical struc-
tural brain network derived from twenty healthy human subjects by averaging over the coupling between two brain 
regions k and j. The 90 brain regions k, j are taken from the Automated Anatomic Labeling atlas in Fig. 9, re-labeled 
such that k = 1, ..., 45 and k = 46, ..., 90 correspond to the left and right hemisphere, respectively. (B) Schematic re-
presentation of the graph of the brain structure with highlighted left (dark blue) and right (light orange) hemisphere. 
(After Ramlow et al. 2019.)

A B



Eckehard Schöll

84	 Nova Acta Leopoldina NF Nr. 425, 67–95 (2020)

sion direction in each voxel of the brain. Probabilistic tractography then provides for each 
voxel a set of ns = 5000 streamlines, simulating the possible white matter fiber tracts. A coef-
ficient Pkj giving the connectivity probability from the k-th to the j-th region is introduced by 
the proportion of streamlines connecting voxels in region k to voxels of region j on the con-
dition that they originate in region k. Thus a weighted adjacency matrix of size 90 × 90, with 
node indices k ∈ N = {1, 2, ..., 90} is constructed. Finally, each entry in this adjacency matrix, 
i.e., the connectivity between every two regions, is averaged over 20 subjects (mean age 33 
years, standard deviation 5.7 years, 10 females, 2 left-handed) yielding the average empirical 
structural brain network A = {Akj}. The pipeline for constructing the structural network has 
been adopted from previous study of differences in connectivity patterns between healthy 
subjects and schizophrenia patients (Cabral et al. 2013). Obtaining such connectivity infor-
mation using diffusion tractography is known to face a range of challenges (Schilling et al. 
2019, Hlinka and Coombes 2012). Note that there is a very slight structural asymmetry of 
the two brain hemispheres. This structural asymmetry is well described in the neuroscience 
literature and is related to the known asymmetries in localization of psychological functions, 
such as the prevalence of language functions in the left brain hemisphere in humans. Moreo-
ver, this lateralization is known to differ between genders as well as age. Note that while a 
weak but systematic asymmetry between the hemispheres (difference between the strength 
of corresponding connections in the left and right hemisphere, Wilcoxon rank sum test, p < 
0.01) was observed in our data set in more than 20 % of the connections – most prominently in 
the temporal cortex – we did not observe significant variation of the asymmetry with gender, 
age, or handedness. This can probably be attributed to the relatively small size of our sample 
that provides information about the general structure and asymmetry of the brain, but not 
about its subject-specific variability.

The FitzHugh-Nagumo equations (see Appendix A) are now split into two sets for the 
right and left hemisphere, respectively, with k ∈ NH where NH denotes either the set of nodes k 
belonging to the left (NL) or the right (NR) hemisphere. The coupling within the hemispheres 
is given by the intra-hemispheric coupling strength σ, while the coupling between the hemi-
spheres is given by the inter-hemispheric coupling strength ς. The synchronization is charac-
terized by the hemispheric Kuramoto order parameter RH(t) which is defined in analogy to the 
global Kuramoto order parameter, however, the averaging is not over the whole network, but 
only over one hemisphere H, either the left (H = L) or right (H = R), see Appendix C.

To achieve partial synchronization patterns we consider the inter-hemispheric coupling 
strength ς as an independent parameter that allows us to reduce the coupling between the he-
mispheres. This is motivated by the presumption that sleeping with one hemisphere at a time 
requires a certain degree of hemispheric separation (Rattenborg et al. 2000). All other pa-
rameters remain unchanged. In a certain intermediate interval of inter-hemispheric coupling 
strength ς < σ we find the partial synchronization pattern shown in Figure 11 where the left 
hemisphere is incoherent while the right is frequency-synchronized, except for three small 
brain regions (hippocampus, gyrus parahippocampalis, and amygdala). This shows up in the 
space-time plot, in the mean phase velocity profile, and in the hemispheric Kuramoto order 
parameter (although there is no perfect phase synchronization resulting in RR < 1). Note that 
the incoherent, left hemisphere occasionally exhibits a high degree of synchronization that, in 
contrast to the right hemisphere, is unstable and vanishes after a short while. In conclusion, 
we have investigated the dynamical asymmetry arising from the structural difference between 
the two brain hemispheres. We have varied the interhemispheric coupling strength, while 
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keeping the intra-hemispheric coupling strength fixed, to increase the degree of inter-hemi-
spheric separation, ranging from isolated to fully coupled hemispheres. This has resulted in 
the observation of partial synchronization patterns similar to spontaneously synchrony-brea-
king chimera states. These partial synchronization patterns occur for coupling strengths whe-
re the isolated hemispheres are frequency-synchronized while the brain network with equal 
intra- and inter-hemispheric coupling remains completely incoherent. By tuning the coupling 
between the hemispheres, we have shown that at intermediate inter-hemispheric coupling one 
hemisphere becomes incoherent, giving rise to a chimera-like partial synchronization pattern.

 
 

  

Fig. 11  (Color online) Partial synchronization pattern for σ = 0.70, ς = 0.15 with low and high degree of synchroniz-
ation in the left (A, C) and right (B, D) hemisphere, respectively. (A, B) Mean phase velocity profiles ωk. (C, D) Inner 
panels: space-time plots of node-wise phase velocity ωk

1 averaged over a single oscillation, outer panels: hemispheric 
Kuramoto order parameter RL,R as a function of time t. Other parameters as in Fig. 5. (After Ramlow et al. 2019.)

These results are in accordance with the assumption that unihemispheric sleep requires a cer-
tain degree of inter-hemispheric separation. Moreover, it is known that the brain is operating 
in a critical state at the edge of different dynamical regimes (Massobrio et al. 2015), exhibi-
ting hysteresis and avalanche phenomena as seen in critical phenomena and phase transitions 
(Steyn-Ross and Steyn-Ross 2010, Ribeiro et al. 2010, Kim et al. 2018). By choosing appro-
priate coupling parameters, we have also found an intriguing dynamical behavior regarding the 
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transition from frequency to phase synchronization. We observe that in this regime our brain 
model exhibits spontaneous symmetry breaking and bistability, where each hemisphere may 
engage into either of two dynamical states, characterized by a relatively high and low degree of 
synchronization. However, a high degree of synchronization in one of the hemispheres always 
coincides with a low degree of synchronization in the other. To sum up, the structural asym-
metry in the brain allows for partial synchronization dynamics, which may be used to model 
unihemispheric sleep or explain the mechanism of the first-night effect in human sleep.

6.	 Conclusions and Outlook

Chimera states are intriguing partial synchronization patterns occurring in a variety of net-
works in nature and technology. They combine spatially separated domains of synchroni-
zed and desynchronized rhythms and are connected with scenarios leading from complete 
synchronization to complete desynchronization. Here we have focussed on applications to 
neuroscience, and presented computer simulations of neural networks modelling the brain. 
Starting from simple regular ring topologies with nonlocal coupling, we have considered 
more complex network topologies, e.g., mathematically constructed networks with fractal 
connectivity generated by a hierarchical iterative algorithm, and empirical structural neural 
connectivities derived from diffusion-weighted magnetic resonance imaging of humans. This 
has allowed us to obtain deeper insight into the structure and functionality of the brain. In all 
of these network topologies, and with various different models of local dynamics, chimera 
patterns have been found in computer simulations. In this review, we have restricted oursel-
ves to the simple paradigmatic FitzHugh-Nagumo model of excitable media to describe the 
dynamics of the individual network nodes.

Typically, chimera states can be observed for weak coupling strength, and further increa-
sing the coupling strength drives the system towards the completely coherent synchronized 
state. The knowledge of the possible dynamical regimes and transitions between them can 
be applied to the study of brain diseases, where synchronized behavior is often pathological, 
and to find possible ways to avoid it. As a prominent example we have presented computer 
simulations of epileptic seizures where the increased coupling strength leads to pathological 
synchrony, initiated or terminated via chimera states.

Further, we have focussed on unihemispheric sleep, where one hemisphere of the brain 
sleeps while the other remains awake. Human brains exhibit a slight structural asymmetry 
of their two hemispheres. We have investigated the dynamical asymmetry arising from this 
natural structural difference in healthy human subjects, using a minimum model which eluci-
dates the modalities of unihemispheric sleep in the human brain. In fact, this state is common 
among migratory birds and mammals like aquatic species like whales, dolphins, seals, but has 
only recently been associated with the “first-night effect” in human sleep, i.e., the observation 
of troubled sleep in a novel environment. The structural asymmetry in the brain allows for 
partial synchronization dynamics and spontaneous dynamic symmetry breaking of the two 
brain hemispheres in the form of a chimera, which may be used to model unihemispheric 
sleep or explain the mechanism of the first-night effect in human sleep, since different sleep 
stages are associated with different degrees of synchronization.

Future promising perspectives of the research on chimeras are, for instance, chimera patterns 
in small networks, adaptive networks, in two and three spatial dimensions, complex coupling 
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topologies like modular, fractal, or multilayer connectivity, coupled phase and amplitude dyna-
mics, information flow in chimera states, as well as filtering and control methods for stabilizing 
chimera states (Schöll et al. 2020). Time delay, which is ubiquitous in real-world systems, has 
been identified as a powerful tool for control of general synchronization patterns: It allows for 
observation of novel synchronization scenarios where the coherent domains of chimera states 
in the outer layers of multiplex networks are synchronized, while the incoherent domains are 
not (Sawicki et al. 2018). The middle relay layer remains desynchronized and exhibits various 
multi-chimera patterns, or even chaotic dynamics. Furthermore, partial relay synchronization of 
chimeras states in the outer layers has been realized in the form of intriguing double chimeras, 
where the coherent domains in both layers are synchronized, while the incoherent ones are not. 
By choosing an appropriate value for the time delay one can switch between the different syn-
chronization scenarios. Quantum signatures of chimera states like bosonic squeezing, weighted 
quantum correlations, and measures of mutual quantum information (Bastidas et al. 2015) also 
offer promising directions of future research.

Appendix A: The FitzHugh-Nagumo Model

In the Appendices we give the detailed mathematical expressions used for the computer si-
mulations in the main text. The FHN model describes neural areas by two simple differential 
equations for an activator variable (the membrane potential) and an inhibitor variable (reco-
very variable). We consider a network of N nonlocally coupled FHN oscillators (Omelchen-
ko et al. 2013, 2015a):
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where uk and vk, k = 1 ,..., N are the activator and inhibitor variables, respectively, Akj is the 
coupling matrix of the network, ε > 0 is a small parameter characterizing a timescale separa-
tion between the fast activator and the slow inhibitor, and σ denotes the coupling strength. All 
indices are modulo N. Depending upon the threshold parameter a, each individual FHN unit 
exhibits either oscillatory (|a| < 1) or excitable (|a| > 1) behavior. Self-sustained oscillatory 
behavior means that the steady state is unstable, and a limit cycle, i.e., a periodic trajectory, is 
born, while excitable behavior means that the steady state is locally stable, but single spikes 
can be generated by supra-threshold excitation.

The important feature of Equations [1a, b] is that they contain not only direct u–u and v–v 
couplings, but also cross-couplings between activator (u) and inhibitor (v) variables, which 
we model by a rotational coupling matrix:
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Therefore, the matrix B is determined by the coupling phase φ.
We assume that all elements are in the oscillatory regime and identical, i.e., −1 < a < 1. 

For a one-dimensional ring topology of N nonlocally coupled FHN oscillators, where each 
element is coupled to R neighbors on either side (Omelchenko et al. 2013), the coupling term 
in Equations [1a, b] becomes

	
 
 𝜎𝜎𝜎𝜎 ∑𝐴𝐴𝐴𝐴𝑘𝑘𝑘𝑘

𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗=1
 = 𝜎𝜎𝜎𝜎
2𝑅𝑅𝑅𝑅

∑
𝑘𝑘𝑘𝑘+𝑅𝑅𝑅𝑅

𝑖𝑖𝑖𝑖=𝑘𝑘𝑘𝑘−𝑅𝑅𝑅𝑅
 [3] 

  
𝑗𝑗𝑗𝑗

	 [3]

Appendix B: Local Order Parameter

The spatial coherence and incoherence of the chimera state can be characterized by a real-
valued local order parameter (Wolfrum et al. 2011, Omelchenko et al. 2011]

	
 

4 
 

 𝑍𝑍𝑍𝑍𝑘𝑘𝑘𝑘 = � 1
2𝛿𝛿𝛿𝛿

∑ 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃𝑗𝑗𝑗𝑗
|𝑗𝑗𝑗𝑗−𝑘𝑘𝑘𝑘|≤𝛿𝛿𝛿𝛿

 � , 𝑘𝑘𝑘𝑘 = 1, … ,𝑁𝑁𝑁𝑁   

 [4] 
  

	 [4]

where θj = arctan(vj/uj) denotes the geometric phase of the j-th FHN unit. We use a spatial 
average with a window size of δ = 25 elements. A local order parameter Zk = 1 indicates that 
the k-th unit belongs to the coherent part of the chimera state, and Zk is less than 1 for inco-
herent parts.

Appendix C: Global Order Parameter

For the characterization of the spatial structure of the obtained patterns in Section 4 we use 

the global Kuramoto order parameter  where φk is the dy-

namical phase. In the uncoupled case, the geometrical phase is defined as θk = arctan(vk/uk). 
The function t(θk) is calculated numerically, assigning a value of time 0 < t(θk) < T for every 
value of the geometrical phase, where T is the oscillation period. The dynamical phase is then 
defined as ϕk = 2π · t(θk)/T, which yields constant phase velocity ϕ

.
k. The global order parame-

ter varies between 1 and 0, and r = 1 corresponds to the completely synchronized state in the 
system. Small values denote spatially desynchronized states.

The synchronization of the brain hemispheres in Section 5 is characterized by the hemi-
spheric Kuramoto order parameter:

	

 

6 
 

 , [5] 
 

  	 [5]

where H denotes either the left (H = L) or right (H = R) hemisphere.
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