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that would seem to be a daunting challenge, 
but he did connect successfully with a 
general audience.

The two keynote talks were given by 
the celebrants. Berry spoke of the interplay 

between the Aharonov–Bohm effect and the 
geometric phase in the motion of magnetic 
half-fluxons in a cloud of electric charges. 
Aharonov and co-workers had analysed such 
a problem in the past through qualitative 

insights. Berry’s mathematics allowed him 
to discover remarkable new features, which 
he named the ‘dance of degeneracies’ after 
the intriguing motions of the topological 
singularities in the wave functions.

The last talk, by Aharonov, had an 
unusual format for such a meeting. He 
presented his ideas about measurement 
in quantum mechanics by challenging the 
audience with a paradox involving apparent 
non-conservation of momentum and inviting 
discussion. Berry picked up the mathematical 
subtlety of the paradox and a lively 
discussion ensued with the audience refusing 
to leave until the session was extended for 
half an hour. Aharonov’s resolution of the 
paradox was complete uncertainty of the 
modular momentum. In his interpretation, 
the indeterminacies of quantum mechanics 
are in fact necessary to preserve causality in 
the measurement process.

The paradoxes, physical and mathematical 
insights, and experimental achievements 
reported at the meeting were perhaps best 
described in the words of Michael Berry, who 
called the meeting “intellectually delicious”. ❐
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Michael Berry (standing) and Yakir Aharonov during the 1998 Wolf Prize awarding ceremony in the 
Chagall hall of the Israeli Knesset.

Chaos is usually associated with 
undesirable disorder. In mathematics, 
chaos is the behaviour shown by 

any nonlinear dynamic system whose 
time evolution depends sensitively on its 
initial conditions, rendering prediction of 
its future state practically impossible even 
though it is strictly deterministic. And 
so it would seem counterintuitive to use 
chaos to generate well-structured ordered 
behaviour as needed in robotic control. Yet, 
writing in Nature Physics1, that is essentially 
what Steingrube and colleagues describe, 
in a report that shows that a relatively 
simple control algorithm based on chaotic 
behaviour can permit a hexapod (six-legged) 
robot to exhibit a complex array of adaptive 

behaviours that allow it to successfully 
navigate its way through a disordered and 
changing environment.

A key concept in chaos theory is that 
of a chaotic attractor. The building blocks 
of a chaotic attractor (such as the Rössler 
attractor represented in Fig. 1a) in a system’s 
phase space are formed by many unstable 
periodic orbits of different periods. The 
time trajectories wander erratically between 
these different unstable solutions, which 
gives an intuitive picture of chaotic motion. 
At the same time this opens the possibility 
of generating different kinds of ordered 
behaviour from chaos by stabilizing any one 
of these unstable periodic orbits by a small 
self-adaptable control force, which perturbs 

the neighbourhood of those unstable 
orbits such that they become attractive, 
that is, stable, and without changing the 
orbits themselves. This is the essence of 
chaos control.

One of the simplest implementations of 
chaos control uses time-delayed feedback. 
This involves a control signal, u(t), that is 
proportional to the difference in the value of 
some output variable, y(t), at the present time, 
t, and some time, t−p, in the past, where p is 
the delay time. That is, u(t) = K(y(t)−y(t−p)), 
where K is a coefficient that determines the 
feedback strength (see Fig. 1a). Choosing the 
value of p, so that it is the same as the period 
of some desired unstable periodic state, one 
can stabilize this state for suitable values 
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Chaos control sets the pace
Even simple creatures, such as cockroaches, are capable of complex responses to changes in their environment. But 
robots usually require complicated dedicated control circuits to perform just a single action. Chaos control theory 
could allow simpler control strategies to realize more complex behaviour.
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of the control amplitude, K. This control is 
non-invasive as the control force vanishes 
if the target state is reached, so that u = 0 if 
y(t) = y(t−p). Moreover, detailed knowledge 
of the target state is not required, and the 
scheme is very robust and universal to apply.

Steingrube and co-workers take a similar 
approach to enable an autonomous robot 
to select which of several different walking 
patterns to use in order to navigate through 
different environments. At the heart of the 
robot’s control system is a simple two-
artificial-neuron module represented by a 
nonlinear (sigmoid) activation function. A 
time-delayed feedback loop is connected 
to this chaotic two-neuron module in 
the same way as shown in Fig. 1a. Each 
p is associated with a certain gait, and K 
represents a self-adaptable control strength. 
The goal is to generate different gaits of 
a hexapod in an adaptive way, and at the 
same time to coordinate walking with 
other types of behaviour, such as orienting. 
This is achieved by adaptively learning a 
suitable connection of the multiple sensory 
inputs with p. The versatility of the time-
delayed feedback control method is used 
in an intriguing way to coordinate several 
sensory input signals by synaptic learning, 
and generate different patterns for goal-
directed locomotion. The robot learns to 
escape danger from behind (if approached 
by a predator) or learns to untrap itself when 
one of its legs falls into a hole in the ground 
(Fig. 1b). For instance, the uncontrolled 
chaotic dynamics — the ground state2 of 

the simple neuron module — is used to 
generate an omnidirectional search pattern 
for self-untrapping.

This combination of chaos control theory, 
neural network dynamics and robotics is 
both new and clever. Indeed, it is remarkable 
that the authors manage to stabilize a fairly 
large number of different higher-order 
unstable orbits of various periods, a feature 
that is normally not easy to achieve by 
standard time-delayed feedback control 
methods. This might be because of the 
particularly simple form of the neural 
dynamics in terms of coupled discrete 
maps, and will need further investigation 
in the future. This feature is an important 
ingredient for generating multi-input–multi-
output patterns.

How can this robot learn to react 
optimally to its environment? This is 
another interesting aspect of the work by 
Steingrube and co-workers: the optimum 
feedback strength K is not chosen as a fixed 
value, but is persistently adapted during the 
time evolution by comparing the control 
strength to a measure of the error, that is, 
the deviation of the present system state 
from the periodic target state. This is a first 
step towards combining tools from two 
different control concepts, chaos control and 
optimal control, which have been developed 
by separate scientific communities with 
little overlap so far. Classical optimal 
control theory uses a ‘cost functional’, which 
is optimized to approximate a desired 
state with the least ‘cost’. It is not yet well 

understood how the two approaches can 
be combined, and more research in this 
direction in the future is necessary.

The results offer important perspectives 
of applications to a wide range of complex 
robotic control problems. One may think 
of using such autonomous robots to 
explore other planets in space, or to access 
dangerous sites in case of catastrophes, 
such as earthquakes or terrorist attacks. 
Besides locomotion, self-adaptation by 
chaos control techniques might also be used 
for self-organized learning of any complex 
robotic functions requiring multiple inputs 
and outputs.

Not only does it represent a simple and 
efficient approach to robotic control, it also 
provides possible insights into how natural 
neuronal systems might coordinate complex 
functions. Ever since the initial suggestion 
to use time-delayed feedback to suppress 
chaos3, the notion of chaos control has been 
extended to a much wider class of problems 
involving the stabilization of unstable 
periodic or stationary states in general 
nonlinear dynamic systems, including 
spatiotemporal patterns and stochastic and 
noise-mediated structures4. Therefore, in 
a broader context, this control approach 
demonstrates that it could have many cross-
disciplinary uses. To mention but a few 
examples from neuroscience, for instance, 
time-delayed feedback can be used to 
suppress pathological states of synchronous 
firing of neurons, which occur in Parkinson’s 
disease, essential tremor, or epilepsy5,6. Also, 
one might apply time-delayed feedback 
control to suppress excitation waves 
(spreading depression) that occur in the 
brain during a stroke7 or migraine8. In case 
of a migraine, such feedback loops might 
perhaps be implemented through special 
spectacles by using the intensity of light 
that patients are exposed to as a control 
variable to which migraine sufferers are 
particularly susceptible9. ❐
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Figure 1 | Chaos control enables a relatively rudimentary neural network to produce complex 
self-organized behaviour in response to changes in a robot’s environment. a, Time-delayed feedback 
control (closed-loop control) of a dynamic system represented symbolically by a chaotic attractor 
(spiral-type chaotic trajectories in the x1–x2–x3 phase space of the system). The difference between 
the output variable y(t) and its delayed value is fed back as a control signal u(t), to suppress the chaos 
and stabilize a single periodic cycle. The value of K determines the strength of the feedback. b, When 
the hexapod is presented with an obstacle, such as one of its legs getting caught in a hole, its chaos-
driven neural circuit generates an omnidirectional search pattern to identify an appropriate strategy 
to overcome the obstacle. Image courtesy of Poramate Manoonpong and Marc Timme, Max Planck 
Institute for Dynamics and Self-Organization and University of Göttingen.
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