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Time-Dependent Simulation of a Semiconductor
Laser Amplifier: Pulse Compression in a Ring
Configuration and Dynamic Optical Bistability

MARTIN SCHELL anpo ECKEHARD SCHOLL

Abstract—We present a dynamic theory of a semiconductor laser
amplifier with time-dependent optical input signal and driving injec-
tion current. Previous treatments are extended by including a carrier
density-dependent refractive index, a frequency-dependent gain, and
multimode operation. The simulation yields optical bi- and tristability
strongly depending upon the speed, at which the optical input-output
characteristic is scanned. Tristability can be found in case of high
pumping and large linewidth enhancement factor only.

Applying our theory to a ring laser configuration we find asymptotic
pulse compression, which can lead to the emission of a stable sequence
of short pulses with widths down to about 6 ps. The face reflectivities,
the external loss in the optical feedback loop, the detuning between the
current repetition time and the optical round-trip time, the peak in-
jection current, and the spectral linewidth of the gain are varied in
order to check their influence on the optical pulsewidth. The shortest
pulses are predicted for high optical feedback and low facet reflectiv-
ities. Even with reflectivities as low as 10~5 the pulsewidth is limited
by the Fabry-Perot linewidth, rather than by the spectral gain line-
width.

I. INTRODUCTION

HE generation and amplification of short optical
pulses by semiconductor laser amplifiers (SCLA’s) is
of great current interest [1]-[21] because of their potential
applications in optical communication systems. Another
important effect in SCLA’s is provided by bistability in
the optical input-output characteristic, which could be
useful, for example, in digitizing optical pulses [24]-[32].
The production of short optical pulses by means of gain
switching was treated earlier in a number of papers [2],
[3], [5], [11]. In this paper we present a more general
theoretical approach which allows us to deal with gain
switching and with active mode locking in an external
cavity to produce a sequence of (coherent) short pulses.
In order to extend the analysis of single-pulse amplifica-
tion [12] to the regime of active mode locking, we gen-
eralize the model used in [11] and [12] by including the
frequency dependence of the gain, and the dependence of
the refractive index upon carrier density.
Furthermore, the treatment of spontaneous emission is
now included by adding a random electric field rather than
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by an additional rate equation for the photon density cre-
ated by spontaneous emission. This introduces a direct
coupling between spontaneous emission and the signal
wave. We describe our novel simulation method and ap-
ply it to two different physical situations: 1) dynamic op-
tical bistability (especially with rapidly varied optical in-
put) and 2) active mode locking in a ring configuration.
In the latter case a number of parameters are varied in
order to determine the lower limit for the pulsewidth.

IIl. THE SIMULATION METHOD

The electrons are described by the common rate equa-
tion [2], [4], [35]

n=nJ(1)/(ed) = W(n) — W(n)S (1)

where n is the spatially averaged (over the SCLA’s active
region) carrier density, 7 is the injection efficiency, e is
the elementary charge, d is the active layer thickness, J(¢)
is the time-dependent injection current density, W(n) is
the rate of spontaneous emission, W(n) is the modal gain,
and § is the axially averaged photon density. In the fol-
lowing, W(n) = go(n — ny), with transparency concen-
tration ny and modal gain constant go, and W(n) = Bn’
are chosen, not for principal reasons, but for the sake of
simplicity. Note that in contrast to our treatment of the
electromagnetic field, which will be described below, here
the spectral gain g(w) is approximated by a constant g,
and g, is chosen as the maximum of g(w). This assump-
tion is surely justified, because the spectral gain only var-
ies about 0.2% in the occurring frequency band, which
gives an appreciable effect in the mode competition, but
not in the integral S, which is the total intensity summed
over all modes.

The electromagnetic field is described by a differential
equation, which can be derived from the Maxwell equa-
tions with the common slowly varying amplitude and ro-
tating wave approximations [8], [13],

aE*+vaEi
a — ¢ oz

- % {Pg(w)[(n - ny) + ia(n — n)] - K'}Ei‘

(2)
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Here E* (¢, z) is the complex amplitude of the forward-
backward (in the z-direction) traveling electromagnetic
field without the fast oscillating part ~ exp (i(w? + kz)),
vy = ¢/ng is the group velocity, T' is the optical confine-
ment factor, n, = ny + (&' — In (r,r)/7)/(Tgy) is the
threshold carrier density, «’ is the optical loss inside the
SCLA, and o = — x,/x/ with

_aRe(x(n)) , d Im (x(n))

Xr = | X
' Bn n=n; x an

n=n

is the linewidth enhancement or antiguiding factor where
x is the complex dielectric susceptibility.

Our basic model is constituted by (1) and (2) supple-
mented by the boundary conditions

E*(1,0) = nE~(1,0) + n,E; (1)
E~(t,L) = nE*(t,L) + LEL(¢)
EL(t) =HE"(t,L)
Eou(t) = tE™(1,0) (3)

where r,, r, and t,, 1, are the reflection and transmission
coefficients, respectively, of the two facets, satisfying r?
+ 1?2 =1and r’ = R,. EZX(t) and EZ, (1) are the optical
input and output field amplitudes (Fig. 1).

The time-dependent solutions are computed iteratively
with the approximation that during sufficiently small, dis-
crete timesteps A¢, the electric field is integrated with
constant n(¢) and the carrier density is subsequently in-
tegrated with S(z). Rather than using a fixed discrete set
of mode equations in the time domain, we Fourier-trans-
form the fields during each timestep and amplify them in
the frequency domain.

In our simulation we use the discretization scheme for
(2) sketched in Fig. 1. Note that all fields are normalized
to the dimension of cm™3/2, During each timestep of
length At = 7/Ngy (7: single-pass time, Ngr: number of
discrete points chosen) for the integration of (1) and (2)
the following procedure is taken.

1) Simulation of Spontaneous Emission: An electrical
field E& (1, i) with |E& (¢, 1)|* ~ BBn?, where @ is the
spontaneous emission factor, and a random phase is added
at each of the 2Ngr points of Fig. 1.

2) Amplification with Frequency-Dependent Gain: The
forward and backward traveling waves E* (¢, i) and
E ™ (t, i) corresponding to one cavity round-trip are Fou-
rier-transformed according to

E(t Ao E E* (1 k) exp [ —i 4T
T NG )T S » %) eXp 2N
_ .(k + Nsﬂf”)}
+ E~(t, k) ex <—1——
(t, k) exp 2Ngr

(_NST + 1)3 v 7NST'

il

J (4)
Thus E(t, JjAwgp/Nsp) corresponds to the complex am-
plitude of the frequency part of the electrical field inside
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Fig. 1. Discretization scheme: traveling wave fields E* (¢, z) are replaced
by EX(t,i), i€ withz = 5[L + (-L + i2L/Nsy)); L is length of
SCLA, which is divided into Ngr equal intervals.

the laser with the frequency j A wgp/Nsr, Where Awpp =
w /7 is the spectral spacing of the SCLA’s Fabry-Perot
modes. E is amplified with the following complex ampli-
tude gain for one timestep:

Ga(w, n)

-eofd - (529)
“((n = ny) + ia(n = m,)) - K’]T/NST}
(5)

This is equivalent to an integration of (2) for the timestep
At with the assumption that n (1) does not vary during this
time. Here the spectral gain function g(w) is expanded
around its maximum gy, and Aw, = 280
| % (w)/8w?|, - o]~ '/* is a measure for the gain line-
width. Note that w, is chosen as the carrier frequency of
E*(t, z) and is supposed to be a Fabry-Perot resonance
frequency for « = 0. Inverse Fourier-transformation of
E leads to the amplified signal amplitudes E* (¢ + Az, i
+1),i=1, -+, Ngt — 1. Fori = Ngr, additionally,
the boundary conditions (3) are necessary.

3) Integration of the Carrier Rate Equation: Equation
(1) is integrated using a Runge-Kutta scheme. Here, S is
computed according to

NsT

S(t) = 2—1\1/;';1 (|E* (. i)'2 +|E (1 i)'z). (6)

4) Input and Output: The optical input and output field
amplitudes E () and EZ, (1) are included via the bound-
ary conditions (3).

This model takes account of multiple reflections and
interference of the traveling waves, a carrier-density de-
pendent refractive index (linewidth enhancement factor,
associated with frequency chirp), frequency-dependent
gain, and spontaneous emission in a simulated frequency
band of the width + Nyt A wgp. The frequency resolution,
which is only limited by the total simulation time and the
computer resources, was typically 1 GHz.

We have not included in our simulation spectral or spa-
tial hole burning effects, gain saturation [ S-dependence of
W(n)] and, due to the plane-wave approximation, optical
modes higher than TEMo.
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III. OpTICAL BISTABILITY

Bistability in the optical input-output characteristic is
of current interest in view of its possible applications in
optical computing or digitizing of optical pulses [24]-
[32]. Here the laser is driven by a CW injection current,
while an optical input signal is coupled in at one side of
the SCLA (Fig. 2). Due to the plane-wave approximation
spatial instabilities, which also produce interesting time-
dependent behavior, cannot be included at this level of
desription (for a review on these phenomena see [34]).

While many authors have treated the static theory [24]-
[26], the time-dependent behavior below the threshold has
been analyzed in [28]-[32]. One aim of this paper is to
develop a novel integration method which is so general
that it is appropriate for both optical bistability and active
mode locking, and apply it to dynamic optical bistability
above threshold.

Note that the simulations in this paper are performed
without gain saturation which is not necessary for under-
standing optical bistability or active mode locking. Inclu-
sion of gain saturation (S-dependence of g,) could be a
useful further extension of the theory.

In the following simulations the optical input was cho-
sen in a triangular form (for the case of simplicity) (Fig.
3) where ¢ is the sweeping time of the input-output char-
acteristic. As our method allows for any arbitrary time
dependence of the input there would be no problem to
extend our simulations to more realistic input shapes. The
other parameters used in the simulations of this paper are
listed in Table I.

Although the simulated optical input signal was only
slowly varying on the scale of the single-pass time the
simulations have shown that the number of discretization
points must be at least N5y = 2 to provide satisfactory
agreement with the static theory in the case of long f.
This is caused by the exponential growth of the backward
and forward traveling field intensities inside the SCLA
leading to a spatial inhomogeneity in |[E*|> + |E~ |
Note that Ngr simultaneously determines the temporal and
spatial resolution.

A particular choice of the center frequency w;, of E;, (1)
only shifts the regions of bistability on the | E;, |*-axis and
is chosen as wy, = wy + wl,Awpp, Where wy is the fre-
quency of maximum spectral gain and w{, = 0.25 deter-
mines the optical input frequency.

Fig. 4(a) shows a simulation in the quasistatic regime
(tc = 33 ns, full line) in comparison with a static ana-
lytical solution (dotted line) calculated from the active Fa-
bry-Perot theory [9], [11]:

(1 — r%)(l - r%)Gs
(1 - rlrsz)2 + 41, G, sin’ (¢)

|Eou!|2 = ‘Ein|2 (7)
with

o= roi 4 el -

G, = exp ((Tgo(n = my) = «')/7)

ﬂ,) »

(8)

Eplt) SCLA { static Injection current )

—

Fig. 2. Configuration used for simulation of optical bistability.
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Fig. 3. Optical input as function of time used for simulation of optical
bistability.
TABLE 1
PARAMETERS FOR THE SIMULATIONS®
B=1.6-10""cm’/s
g =4-10"%cm®/s
& =0.722 - 10'?/s
g=10"*
=02

o = 125 - 10" cm™?
Awpp = 27 - 125 GHz
Aw, = 40 * Awpp

L = 300 um
R ,=ri=r;=033
ng =4
T, = 1024 ps
Ty = 1024 ps
Ngr =2
Ao = 0.8 um
wo = 2wc /Mg

“Parameters are shown for the simulations
(unless listed differently in the respective
figure caption).

where n is determined from a self-consistent solution of
(1) in the steady state with § = N + §', together with the
equations for the photon densities of amplified sponta-
neous emission N and amplified signal S’ [11]:

0 = T'gy(n — n)N + BBn®

5= _1_(‘GS| - 1)(1 + r%IGSD
t |G| In |G,

The electrical field intensities are plotted in units of the
threshold carrier density n,. The simulation displays a
short relaxation oscillation when changing from one
stable state to the other. This oscillation is reduced grad-
ually with decreasing sweeping speed, but does not fully
disappear. The intensity spike in the up-switch has also
been found in experiments [29] and other simulations [28],
[291, [31], [32] and is a general phenomenon in dispersive
optical bistability, related to passing through a Fabry-
Perot resonance. The spike in the down-switch can occur
only if the laser is operated above threshold where the
lowest output branch corresponds already to a lasing state.

The differences between the static theory and the time-
dependent simulations in the high-power input region can

I

| |-
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Fig. 4. Optical bistability: normalized optical output intensity is plotted
versus optical input intensity for J = 1.2 J,(J, threshold current den-
sity), wf, = 0.25, @ = 7, and (a) tc = 33 ns and (b) 7 = 4 ns. (Full
line: time-dependent numerical solution, dotted line: static analytical so-
lution.)

be explained by a linearization of the bimolecular rate of
spontaneous emission, which is necessary in the analytic
solution. Another difference with respect to the static the-
ory can be seen in the oscillatory behavior for low, in-
creasing optical input intensity. The oscillations are due
to oscillations in the carrier density. They appear to be
related to the usual relaxation oscillations occurring above
laser-threshold. We note that—in contrast to other simu-
lations [28]-[32]—we bias the laser with an injection cur-
rent above threshold.

Fig. 4(b) shows the switching characteristics for a value
of tc = 4 ns. The occurrence of optical bistability is ob-
viously confined to slowly varying optical input. Here
“‘slowly’” means slowly on the scale of the carrier recom-
bination time, because the switching between different
output branches is connected with a change in carrier den-
sity [33]. The sweeping-speed dependence of the input-
output characteristics is in qualitative agreement with
measured hysteresis curves [29] though a sinusoidal
(rather than a triangular) input intensity was used there.
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Multistable behavior with more than two stable output
intensities corresponding to one input intensity is limited
to the high pumping, high input, and long t--regime. Fig.
5 shows a typical simulation of tristability. The middle
one of the three stable branches (AB) is only reached if
the SCLA is not driven to input intensities large enough
to switch to the highest possible output branch.

IV. AcTivE MoDE LOCKING IN RING CONFIGURATIONS

Active mode locking in SCLA’s requires an external
cavity due to the short round-trip time, which leads to a
high Fabry-Perot-mode difference frequency, which is
above the limit for electrical pulse-generators. The scheme
for the simulated configuration is shown in Fig. 6(a). The
pumping current is chosen as a Gaussian [Fig. 6(b)] with
maximum J,,,, repeated every 7, = 1024 ps. The exter-
nal cavity is assumed to have a linear dispersion, so that

Elﬁ([) = rextE(:it(I - (TI: - T))
with
Yot = Relx/rz; Reyie nt

holds (with T the total roundtrip time and R.,, the relative
intensity loss in the external cavity). A theoretical treat-
ment of mode locking a SCLA in an external (linear) cav-
ity has been given in [22] and [23], for example. Their
analytical solutions are restricted to a sinusoidal time de-
pendence of the gain (no gain depletion) and do not in-
clude, for example, the back reflection at the laser facets
into the cavity, the carrier density dependence of the re-
fractive index, or the spontaneous emission.

With the help of our simulations we shall address the
following questions:

e What is the lower limit for the pulse FWHM (full
width at half maximum), and is it determined by the SCLA
Fabry-Perot linewidth or rather by the spectral gain line-
width?

¢ What is the influence of the « parameter (fre-
quency chirp)?

® What is the influence of spontaneous emission?

® What is the effect of cavity detuning (7T # 1;)?

¢ What is the limit for the injection current to be ap-
plied?

First, in Fig. 7(a), (b), and (c) we show the power spec-
trum, the temporal evolution of the output intensities, and
the carrier density of every fifth emitted pulse for zero
optical feedback, respectively, i.e., when gain switching
is the mechanism leading to the short pulses. The maxi-
mum of the injection current J,,, is optimized such that
the shortest pulses are produced under the constraint that
subsequent relaxation oscillations are suppressed.

The substructure of subsequent emitted pulses results
from the interference of different Fabry-Perot modes. Due
to the statistical nature of spontaneous emission and the
absence of feedback, the SCLA ‘‘forgets’’ the phases of
the different Fabry-Perot modes between two pulses,
which leads to missing spectral correlation [Fig. 7(a)] and
to an erratic change in the substructure between subse-
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Fig. 5. Optical tristability, plotted as in Fig. 4, withJ = 4J,, wj, = —0.5,
a =17, tc = 16 ns, and maximum | E;,|> = 107> n,.
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Fig. 6. (a) Scheme of ring configuration. (b) Injection current versus time.

quent pulses [Fig. 7(b)]. The gain depletion causes a sharp
cutback in carrier density [Fig. 7(c)] during the pulse
emission. This step leads to a widening of the SCLA Fa-
bry-Perot-modes [Fig. 7(d)], when additionally the car-
rier dependence of the refractive index (« = 3 instead ot
« = 0) is introduced. The spectral ‘‘rabbit ears’’ in Fig.
7(d) are also found experimentally [16]. The pulsewidth
is not affected by a nonzero «. Note that the asymptotic
pulse FWHM averaged over the last 20 pulses is 13 ps,
which is the optimum to be reached with this configura-
tion, with the given pumping pulse reptition time T, and
without feedback. With increasing 7, the pulsewidth
slightly decreases.

A. Low Feedback and High Reflectivities

Fig. 8(a) and (b) shows the shortest possible pulses ob-
tained with the same parameters as in Fig. 7(a)~(c), but
with an external feedback rate of R,,, = 10% and an ap-
propriately lowered maximum of the injection current.
The FWHM (12 ps) is slightly less than in Fig. 7 and the
spectra exhibit a certain amount of correlation between
subsequent pulses. The fine structure of subsequent pulses
[Fig. 8(b)] is more stable than in Fig. 7(b), but small vari-
ations for subsequent k7 indicate that mode locking is not
yet complete. This result prompts one to attempt to pro-

Fig. 7. Simulation for periodic injection current without feedback. (Jpax
=6.1J, a0 =0,w = (v — w)/Awgp is normalized frequency, kr €
N is index that labels subsequent emitted pulses, ¢’ is time scale for one
puise with total elapsed time ¢ = k;T, + t',and —=T,/2 < 1t' = T,/2.)
(a) Power spectrum of output field

2

P(w’, kr) ~

S(h* /)T

Ed (t) exp (—i(wo + w' Awpp)t) dt
(kr=1/2)1T

(b) Temporal evolution of normalized output intensity
2 2
B, kr) | = [Edult = kT

(c) Carrier density n/n,. (d) Influence of linewidth enhancement factor in
the gain-switching regime (same plot as in (a), but with a = 3 instead
of a = 0).

duce still shorter and more coherent pulses by further in-
creasing R.,;.

B. High Feedback and High Reflectivities

Fig. 9 with R,,, = 50% shows that the situation is,
however, more complicated: Although there is complete
coherence and form stability between subsequent pulses,
the FWHM has drastically increased. The reason lies in
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Fig. 8. Simulation ot ring configuration with low feedback and high re-
flectivities (same parameters as in Fig. 7(a)~(c), but R,,, = 0.1 and lower
maximum injection current ( J,,, = 4.5 J,) in accordance with decreased

effective dynamic threshold). (a) Power spectrum of output field. (b)
Temporal evolution of output intensity.

; 5
3.1%107n,

50ps

150ps

Fig. 9. Simulation of ring configuration with high feedback and high
reflectivities (same parameters as in Fig. 8(b), but R,,, = 0.5, J,, =
2.4J).

the SCLA facet reflectivities, which lead to a strong Fa-
bry-Perot-type behavior of the SCLA and to a relatively
large amount of reflected optical input, which puts the
system off phase after the next round-trip.

C. High Feedback and Low Reflectivities

The effects of reducing the SCLA facet reflectivities
down to 0.01 (instead of R, = R, = 0.33) are shown in
Fig. 10(a) and (b). The FWHM (21 ps) has decreased
again, but is still larger than in the zero-feedback gain-
switching regime. When « # 0 is introduced now [Fig.
10(c)] the small variation of carrier density during the
pulse’s emission does not lead to a widening of the Fa-
bry-Perot modes but to a frequency shift due to the low-
ered effective laser threshold.

The effect of a further reduction of the reflectivities is
shown in Fig. 11. For values of about 107> the same
FWHM as in the gain-switching case can be achieved.
The extremely small value of 1073 leads to a FWHM of
about 6 ps. At this point again, a comment on the numer-
ical resolution is in order. Ngr was chosen equal to 2 lead-
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Fig. 10. Simulation of ring configuration with low feedback and low re-
flectivities ( same parameters as in Fig. 9, but with R, , = 0.01, Jy =
1.35 J, = 2.8 Jy33, where Jy 33 is the injection current threshold for
reflectivities of 0.33). (a) Power spectrum. (b) Temporal evolution of
the output intensity. (c) Influence of the linewidth enhancement factor
in mode-locking regime (same plot as in (a), but with « = 3 instead of
a=0).

FWHM
{ ps)
36 -, aw_ = 160 2w,
- ¢ : Aw_ = 40 [
28 - . # : Aw_ = 10 Y .
20 a
| 4
5 ] B .
4 4 A
T T T T T
1% 107 102 102 16* 10 Rz

Fig. 11. Pulsewidth versus reflectivities for different gain linewidths Aw,
(@=0,Rp =05 Jo =054J, =28J3).

ing to a time step length of 2 ps. Although a higher res-
olution might be thought to be necessary to properly
account for 6 ps pulses, tests with Ngy = 4 resulted in
only slightly different FWHM. From further numerical
checks we could exclude that the lower bound of the sim-
ulated pulse length was limited by the low numerical res-
olution. Also, the product of the pulse FWHM and the
spectral bandwidth is at least by a factor 2 higher than for
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a Gaussian (0.88), so that the pulsewidth is not Fourier-
transform limited.

It remains as a question, whether 6 ps are a lower limit
imposed by the spectral gain linewidth A w,. A repetition
of the simulations with a spectral linewidth increased or
decreased by a factor of 4 shows that only for R = 1073
there is a small broadening in the pulsewidth with de-
creasing gain linewidth. Also, a lowering of the sponta-
neous emission coefficient 8 by a factor of 10 effects a
reduction of the FWHM by only 10%. This indicates that
the Fabry-Perot character of the external-cavity/SCLA
system mainly determines the lower limit of the FWHM
for short pulse production by active mode locking (be-
sides spontaneous emission).

The dynamics of short pulse production by active mode
locking is shown in Fig. 12. Obviously the establishment
of a fixed phase relation between the external cavity
modes, which leads to the desired short pulses, is a con-
tinuous process which needs about 300-400 round trips
to converge to the final asymptotic state.

D. Detuning

The introduction of a small amount of detuning (7 =
T; + 2 ps 2 0.4%) leads to incoherent pulses, to slight
temporal fluctuations in the carrier density, and to a large
increase in the pulse FWHM (T; = T;: FWHM = 21 ps,
Fig. 10; Tz = T; + 2 ps: FWHM = 37ps; T = T; — 2
ps: FWHM = 39 ps). This change is significantly higher
than expected from the analysis of [23].

E. Pumping Current

In the gain-switching regime an increase of the injec-
tion current intensity (with fixed width of the Gaussians)
leads to still shorter pulses, but also to the onset of un-
desired further relaxation oscillations. Mode locking,
however, which occurs for significantly lower injection
intensities, is affected in the following way: the increased
injection current leads to increased optical pulse intensi-
ties and thus to higher gain (and carrier) depletion during
the emission of the pulse. Under the assumption that the
ring configuration still behaves completely periodically
(with period T;) the increase of the carrier depletion is
equivalent to an increase of higher order Fourier compo-
nents in the temporal gain function. They are not included
in the analytical solutions of [22] and [23], and lead to
coupling between nonadjacent external modes. This cou-
pling is then (and only then) in phase with the direct cou-
pling when the gain is symmetric with respect to an ar-
bitrary, but fixed time. As can be seen from the carrier
density behavior in the gain-switching regime (Fig. 7) this
symmetry does not exist. Hence the gain-depletion leads
to a destruction of the mode-coupling mechanism as
shown in Fig. 13, which was simulated with an injection
current increased by 65% compared to the optimum
(shortest possible pulses) current and leads to drastically
broadened pulses. In contrast to that a raised injection
current together with a ‘‘belated”” (Tz = T; + 2 ps) feed-
back causes a drastically reduced pulse width (FWHM =

1011

FWHM
(ps)

20

O
50

kr 2400

Fig. 12. Dynamics of pulse-compression: FWHM of output intensity is
plotted versus index ky that labels subsequent pulses, corresponding to
number of round trips in ring configuration (& = 0, Rexe = 0.5, Jupax =
0.54J, = 2.8 Jo33, Ry, = 107%).

()

Fig. 13. Eftect of too high an injection current (7z = 7, = 512 ps, R, ,
=001, @ =0, Reye = 0.5, Jyux = 1.3 J, = 2.7 Jy33). The shortest
pulses with FWHM = 20.8 ps were obtained for Jin,, = 0.8 J,. (a) Tem-
poral evolution of the output intensity. (b) Carrier density.

12 ps). Here a direct transition to the gain switching re-
gime occurs, because the ‘‘belated’’ preceding pulse de-
pletes the carrier density after the emission of the present
one and thus allows to use a higher injection current with-
out inducing further relaxation oscillations.

V. CONCLUSION

The proposed novel simulation method is appropriate
to treat a semiconductor laser amplifier with still reason-
able computing effort for both time dependent optical in-
put and time dependent injection current while including
the carrier density dependence of the refractive index, the
frequency dependence of the gain, and correct phase re-
lationships of multiple reflections and optical input. Our
method is applied to a linear configuration and to a ring
configuration.
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Our simulations of bi- or multistability in the optical
input-output characteristic have revealed a strong depen-
dence on the sweeping speed of the optical input which
limits the switching speed to the timescale set by the car-
rier recombination time. Optical multistability was only
found for high injection current, high input, and an «-
parameter of the order of 7. Additionally, the fan out of
the multistable simulations in the regime above the laser
threshold was always significantly lower than unity (i.e.,
input power always greater than output power) which will
strongly limit possible applications.

In ring configurations the production of short pulses by
active mode locking appears to be mainly limited by the
Fabry-Perot character of the system and not by the gain
linewidth.

From the variation of various parameters («, Tz, Jmnax
R, ,, R, we obtain the prediction that the shortest pulses
of about 6 ps can be obtained for a high optical feedback
and very low facet reflectivities. This seems to be a gen-
eral limit for active mode locking, and is also found ex-
perimentally [17], [18].

Even for facet reflectivities down to 107> the gain line-
width limit for the FWHM ( ~ 1 ps) cannot be reached.
This indicates that locking of two external modes lying in
different laser modes by active mode locking is either im-
possible, or would require still lower facet reflectivities.

Recently subpicosecond pulses were found by active
mode locking by Corzine er al. [20]. Their work, how-
ever, is not directly comparable as they observed the sub-
picosecond pulses only for modulation with multiples of
the external mode spacing frequency. It might also be
conceivable that a very small amount of saturable absorp-
tion combined with the high modulation frequencies leads
to the short pulses observed.

The injection current must be optimized individually in
each case. Too high injection currents lead to the onset of
relaxation oscillations in the gain-switching regime. Too
high injection currents in the mode-locking regime, or too
low currents in both regimes, lead to broadened pulses.
The pulsewidth, however, is two or three orders of mag-
nitude less sensitive to changes in the injection current
than in [21], where a change of 1.5% in the injection cur-
rent increases the pulsewidth by 800% for pulsed injec-
tion current.

A detuning between optical round-trip time 7y and
pumping period 7 leads to less coupling between the ex-
ternal modes and thus to an increase in the pulse FWHM,
which is significantly larger than in the analytical approx-
imation [23]. The decrease of the FWHM predicted by
Demokan [21] for detuning frequencies of about 500 kHz
was not analyzed as our lowest detuning frequency was 8
MHz. In the gain-switching regime a ‘‘belated’’ feedback
suppresses further relaxation oscillations and thus allows
for higher injection current and slightly shorter pulses.

The carrier dependence of the refractive index («a pa-
rameter) leads to a broadening (in the gain-switching re-
gime) or a shift (in the mode-locking regime) of the SCLA
spectrum. We could not find significant effects of this upon
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the pulsewidth or the mode-locking properties, in agree-
ment with experimental results [18].

The influence of spontaneous emission on the pulse-
width is very small. For 20 ps pulses, for example, a re-
duction or increase of the spontaneous emission factor by
a factor of ten does not effect a visible change in the
FWHM. For 6 ps pulses the same variation causes a
change in FWHM of about 10%. This is again in contrast
to [21].
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