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Time-Dependent Simulation of a Semiconductor 
Laser Amplifier: Pulse Compression in a Ring 
Configuration and Dynamic Optical Bistability 

MARTIN SCHELL AND ECKEHARD SCHOLL 

Abstract-We present a dynamic theory of a semiconductor laser 
amplifier with time-dependent optical input signal and driving injec- 
tion current. Previous treatments are extended by including a carrier 
density-dependent refractive index, a frequency-dependent gain, and 
multimode operation. The simulation yields optical bi- and tristability 
strongly depending upon the speed, a t  which the optical input-output 
characteristic is scanned. Tristability can he found in case of high 
pumping and large linewidth enhancement factor only. 

Applying our theory to a ring laser configuration we find asymptotic 
pulse compression, which can lead to the emission of a stable sequence 
of short pulses with widths down to about 6 ps. The face reflectivities, 
the external loss in the optical feedback loop, the detuning between the 
current repetition time and the optical round-trip time, the peak in- 
jection current, and the spectral linewidth of the gain are varied in 
order to check their influence on the optical pulsewidth. The shortest 
pulses are predicted for high optical feedback and low facet reflectiv- 
ities. Even with reflectivities as low as the pulsewidth is limited 
by the Fabry-Perot linewidth, rather than by the spectral gain line- 
width. 

I. INTRODUCTION 
HE generation and amplification of short optical T pulses by semiconductor laser amplifiers (SCLA’s) is 

of great current interest [ 11-[21] because of their potential 
applications in optical communication systems. Another 
important effect in SCLA’s is provided by bistability in 
the optical input-output characteristic, which could be 
useful, for example, in digitizing optical pulses [24]-[32]. 

The production of short optical pulses by means of gain 
switching was treated earlier in a number of papers [2], 
[3], [5] ,  [ l l ] .  In this paper we present a more general 
theoretical approach which allows us to deal with gain 
switching and with active mode locking in an external 
cavity to produce a sequence of (coherent) short pulses. 
In order to extend the analysis of single-pulse amplifica- 
tion [12] to the regime of active mode locking, we gen- 
eralize the model used in [l 11 and [ 121 by including the 
frequency dependence of the gain, and the dependence of 
the refractive index upon carrier density. 

Furthermore, the treatment of spontaneous emission is 
now included by adding a random electric field rather than 
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by an additional rate equation for the photon density cre- 
ated by spontaneous emission. This introduces a direct 
coupling between spontaneous emission and the signal 
wave. We describe our novel simulation method and ap- 
ply it to two different physical situations: 1) dynamic op- 
tical bistability (especially with rapidly varied optical in- 
put) and 2) active mode locking in a ring configuration. 
In the latter case a number of parameters are varied in 
order to determine the lower limit for the pulsewidth. 

111. THE SIMULATION METHOD 
The electrons are described by the common rate equa- 

tion P I ,  [41, [351 

where n is the spatially averaged (over the SCLA’s active 
region) carrier density, q is the injection efficiency, e is 
the elementary charge, d is the active layer thickness, I (  t )  
is the time-dependent injection current density, @( n )  is 
the rate of spontaneous emission, W (  n )  is the modal gain, 
and 3 is the axially averaged photon density. In the fol- 
lowing, W (  n) = go ( n  - no) ,  with transparency concen- 
tration no and modal gain constant go, and m ( n )  = Bn2 
are chosen, not for principal reasons, but for the sake of 
simplicity. Note that in contrast to our treatment of the 
electromagnetic field, which will be described below, here 
the spectral gain g ( w )  is approximated by a constant go, 
and go is chosen as the maximum of g (a). This assump- 
tion is surely justified, because the spectral gain only var- 
ies about 0.2% in the occurring frequency band, which 
gives an appreciabk effect in the mode competition, but 
not in the integral S, which is the total intensity summed 
over all modes. 

The electromagnetic field is described by a differential 
equation, which can be derived from the Maxwell equa- 
tions with the common slowly varying amplitude and ro- 
tating wave approximations [SI, [ 131, 

aE* 
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at az 
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Here E' ( t ,  z )  is the complex amplitude of the forward- 
backward (in the z-direction ) traveling electromagnetic 
field without the fast oscillating part - exp ( i  ( w t  k kz)) ,  
vg = c / n B  is the group velocity, r is the optical confine- 
ment factor, n, = no + ( K' - In ( r1 r 2 ) / T ) / (  rg,) is the 
threshold carrier density, K' is the optical loss inside the 
SCLA, and (Y = - x:/x,' with 

x: = a Re a n  ( x ( n ) ) /  ti  = n r  ; x : =  a Im a n  ( x ( n ) ) l  n = n r  

is the linewidth enhancement or antiguiding factor where 
x is the complex dielectric susceptibility. 

Our basic model is constituted by ( 1 )  and (2) supple- 
mented by the boundary conditions 

E + ( t ,  0 )  = r , E - ( t ,  0 )  + t , E ; ( t )  

E-(r, L )  = r 2 ~ + ( t ,  L )  + t 2 ~ , ; ( t )  

E:&) = t 2 E + ( t ,  L )  

E&&) = t lE-( t ,  0) (3) 
where r I ,  r2 and t , ,  t2 are the reflection and transmission 
coefficients, respectively, of the two facets, satisfying r f  
+ t f  = 1 and r;  = R,. E ; ( t )  and E&t( r )  are the optical 
input and output field amplitudes (Fig. 1). 

The time-dependent solutions are computed iteratively 
with the approximation that during sufficiently small, dis- 
crete timesteps A t ,  the electric field is integrated with 
constant n ( t )  and the carrier density is subsequently in- 
tegrated with S ( t ) .  Rather than using a fixed discrete set 
of mode equations in the time domain, we Fourier-trans- 
form the fields during each timestep and amplify them in 
the frequency domain. 

In our simulation we use the discretization scheme for 
(2) sketched in Fig. 1. Note that all fields are normalized 
to the dimension of ~ m - ~ / * .  During each timestep of 
length At = 7/NST (7: single-pass time, N S T :  number of 
discrete points chosen) for the integration of (1) and (2) 
the following procedure is taken. 

1) Simulation of Spontaneous Emission: An electrical 
fieldE:p(t, i )  with (ESfp(t, i ) I2  - @Bn2, wherepis  the 
spontaneous emission factor, and a random phase is added 
at each of the 2NsT points of Fig. 1 .  

2) Ampl@cation with Frequency-Dependent Gain: The 
forward and backward traveling waves E ' ( t ,  i )  and 
E - ( t ,  i ) corresponding to one cavity round-trip are Fou- 
rier-transformed according to 

NST 

E f ( t ,  k) exp ( - i  ") 
2 N S T  

j = ( - N S T  + l ) ,  * * * , N S T .  (4) 
Thus E (  t ,  jAwFP/NST)  corresponds to the complex am- 
plitude of the frequency part of the electrical field inside 

Fig. 1. Discretization scheme: traveling wave fields E' ( t ,  z )  are replaced 
b y E * ( t , i ) , i e L ! , w i t h z  = i [ L + ( - L + i 2 L / N s , ) ] ; L i s l e n g t h o f  
SCLA, which is divided into NST equal intervals. 

the laser with the frequency jAwFp/NsT,  where AwFp = 
T / T  is the spectral spacing of the SCLA's Fabry-Perot 
modes. l? is amplified with the following complex ampli- 
tude gain for one timestep: 

G d - 4  n )  

, 
( ( n  - no> + i a ( n  - n, ) )  - K' 1 7 / ~ ~ ~ j .  

( 5 )  

This is equivalent to an integration of (2) for the timestep 
A t  with the assumption that n ( t ) does not vary during this 
time. Here the spectral gain function g ( U )  is expanded 
around its maximum go, and Awg = 
I a2g ( U )  / a w  1 = I - I 2  is a measure for the gain line- 
width. Note that wo is chosen as the carrier frequency of 
E' ( t ,  z )  and is supposed to be a Fabry-Perot resonance 
frequency for (Y = 0. Inverse Fourier-transformation of 
l? leads to the amplified signal amplitudes E' ( t  + A t ,  i 
+ l ) ,  i = 1, - * , N S T  - 1. For i = NST, additionally, 
the boundary conditions (3) are necessary. 

3) Integration of the Carrier Rare Equation: Equation 
(1) is integrated using a Runge-Kutta scheme. Here, 3 is 
computed according to 

, NST 

4) Input and Output: The optical input and output field 
amplitudes E ;  ( t )  and E &  ( t )  are included via the bound- 
ary conditions (3). 

This model takes account of multiple reflections and 
interference of the traveling waves, a camer-density de- 
pendent refractive index (linewidth enhancement factor, 
associated with frequency chirp), frequency-dependent 
gain, and spontaneous emission in a simulated frequency 
band of the width NSTAwFp. The frequency resolution, 
which is only limited by the total simulation time and the 
computer resources, was typically 1 GHz. 

We have not included in our simulation spectral or spa- 
tial hole burning effects, gain saturation [ %dependence of 
W ( n ) ]  and, due to the plane-wave approximation, optical 
modes higher than TEMoo. 
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111. OPTICAL BISTABILITY 
Bistability in the optical input-output characteristic is 

of current interest in view of its possible applications in 
optical computing or digitizing of optical pulses [24]- 
[32]. Here the laser is driven by a CW injection current, 
while an optical input signal is coupled in at one side of 
the SCLA (Fig. 2). Due to the plane-wave approximation 
spatial instabilities, which also produce interesting time- 
dependent behavior, cannot be included at this level of 
desription (for a review on these phenomena see [34]). 

While many authors have treated the static theory [24]- 
[26], the time-dependent behavior below the threshold has 
been analyzed in [28]-[32]. One aim of this paper is to 
develop a novel integration method which is so general 
that it is appropriate for both optical bistability and active 
mode locking, and apply it to dynamic optical bistability 
above threshold. 

Note that the simulations in this paper are performed 
without gain saturation which is not necessary for under- 
standing optical bistability or active mode locking. Inclu- 
sion of gain saturation (S-dependence of go) could be a 
useful further extension of the theory. 

In the following simulations the optical input was cho- 
sen in a triangular form (for the case of simplicity) (Fig. 
3) where fc is the sweeping time of the input-output char- 
acteristic. As our method allows for any arbitrary time 
dependence of the input there would be no problem to 
extend our simulations to more realistic input shapes. The 
other parameters used in the simulations of this paper are 
listed in Table I. 

Although the simulated optical input signal was only 
slowly varying on the scale of the single-pass time the 
simulations have shown that the number of discretization 
points must be at least NST = 2 to provide satisfactory 
agreement with the static theory in the case of long tc. 
This is caused by the exponential growth of the backward 
and forward traveling field intensities inside the SCLA 
leading to a spatial inhomogeneity in I E +  l 2  + I E -  1 2 .  
Note that NST simultaneously determines the temporal and 
spatial resolution. 

A particular choice of the center frequency win of Ei, ( t ) 
only shifts the regions of bistability on the I Ein I *-axis and 
is chosen as win = wo + wi',,AwFp, where wo is the fre- 
quency of maximum spectral gain and win = 0.25 deter- 
mines the optical input frequency. 

Fig. 4(a) shows a simulation in the quasistatic regime 
( t c  = 33 ns, full line) in comparison with a static ana- 
lytical solution (dotted line) calculated from the active Fa- 
bry-Perot theory [9], [ l l ]  : 

with 

' 

,, time 
1-1, 

Fig. 3.  Optical input as function of time used for simulation of optical 
bis tabili ty . 

TABLE I 
PARAMETERS FOR THE SIMULATIONS' 

~~ 

B = 1.6 * lo-'' cm3/s 
go = 4 cm'/s 
K '  = 0.722 . lO'*/s 
p = 1 0 - ~  
r = 0.2 

no = 1.25 . lo1* cm-' 
AoFp = 2r . 125 GHz 

Aog = 40 . AmFp 
L = 300em 

nB = 4 
TJ = 1024 ps 
TE = 1024 ps 

X, = 0.8 pm 

= r: = r: = 0.33 

N,, = 2 

0 0  = 2rc/& 

*Parameters are shown for the simulations 
(unless listed differently in the respective 
figure caption). 

where n is determined from a self-consistent solution of 
(1) in the steady state with S = N + S ' ,  together with the 
equations for the photon densities of amplified sponta- 
neous emission N and amplified signal ' [ 1 13 : 

o = rgo(n - n , ) ~  + p ~ n ~  

The electrical field intensities are plotted in units of the 
threshold carrier density n,. The simulation displays a 
short relaxation oscillation when changing from one 
stable state to the other. This oscillation is reduced grad- 
ually with decreasing sweeping speed, but does not fully 
disappear. The intensity spike in the up-switch has also 
been found in experiments E291 and other simulations [28], 
[29], [3 11, [32] and is a general phenomenon in dispersive 
optical bistability , related to passing through a Fabry- 
Perot resonance. The spike in the down-switch can occur 
only if the laser is operated above threshold where the 
lowest output branch corresponds already to a lasing state. 

The differences between the static theory and the time- 
dependent simulations in the high-power input region can 
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(b) 
Fig. 4. Optical bistability: normalized optical output intensity is plotted 

versus optical input intensity for J = 1.2 J , (  J ,  threshold current den- 
sity), U,', = 0.25, CY = 7, and (a) tC = 33 ns and (b) IC = 4 ns. (Full 
line: time-dependent numerical solution, dotted line: static analytical so- 
lution.) 

be explained by a linearization of the bimolecular rate of 
spontaneous emission, which is necessary in the analytic 
solution. Another difference with respect to the static the- 
ory can be seen in the oscillatory behavior for low, in- 
creasing optical input intensity. The oscillations are due 
to oscillations in the carrier density. They appear to be 
related to the usual relaxation oscillations occurring above 
laser-threshold. We note that-in contrast to other simu- 
lations [28]-[32]-we bias the laser with an injection cur- 
rent above threshold. 

Fig. 4(b) shows the switching characteristics for a value 
of tc = 4 ns. The occurrence of optical bistability is ob- 
viously confined to slowly varying optical input. Here 
"slowly" means slowly on the scale of the carrier recom- 
bination time, because the switching between different 
output branches is connected with a change in camer den- 
sity [33]. The sweeping-speed dependence of the input- 
output characteristics is in qualitative agreement with 
measured hysteresis curves [29] though a sinusoidal 
(rather than a triangular) input intensity was used there. 

Multistable behavior with more than two stable output 
intensities corresponding to one input intensity is limited 
to the high pumping, high input, and long tc-regime. Fig. 
5 shows a typical simulation of tristability. The middle 
one of the three stable branches ( A B  ) is only reached if 
the SCLA is not driven to input intensities large enough 
to switch to the highest possible output branch. 

IV. ACTIVE MODE LOCKING IN RING CONFIGURATIONS 
Active mode locking in SCLA's requires an external 

cavity due to the short round-trip time, which leads to a 
high Fabry-Perot-mode difference frequency, which is 
above the limit for electrical pulse-generators. The scheme 
for the simulated configuration is shown in Fig. 6(a). The 
pumping current is chosen as a Gaussian [Fig. 6(b)] with 
maximum J,,,, repeated every T, = 1024 ps. The exter- 
nal cavity is assumed to have a linear dispersion, so that 

~ i ( t )  = r e x t E Z t ( t  - ( T E  - 7)) 

with 

rex, = RlL2; Rex,, ' 
holds (with TE the total roundtrip time and Rex, the relative 
intensity loss in the external cavity). A theoretical treat- 
ment of mode locking a SCLA in an external (linear) cav- 
ity has been given in [22] and [23], for example. Their 
analytical solutions are restricted to a sinusoidal time de- 
pendence of the gain (no gain depletion) and do not in- 
clude, for example, the back reflection at the laser facets 
into the cavity, the carrier density dependence of the re- 
fractive index, or the spontaneous emission. 

With the help of our simulations we shall address the 
following questions: 

What is the lower limit for the pulse FWHM (full 
width at half maximum), and is it determined by the SCLA 
Fabry-Perot linewidth or rather by the spectral gain line- 
width? 

What is the influence of the CY parameter (fre- 
quency chirp)? 

What is the influence of spontaneous emission? 
What is the effect of cavity detuning (TE # T,)? 
What is the limit for the injection current to be ap- 

plied? 
First, in Fig. 7(a), (b), and (c) we show the power spec- 

trum, the temporal evolution of the output intensities, and 
the carrier density of every fifth emitted pulse for zero 
optical feedback, respectively, i.e., when gain switching 
is the mechanism leading to the short pulses. The maxi- 
mum of the injection current J,,, is optimized such that 
the shortest pulses are produced under the constraint that 
subsequent relaxation oscillations are suppressed. 

The substructure of subsequent emitted pulses results 
from the interference of different Fabry-Perot modes. Due 
to the statistical nature of spontaneous emission and the 
absence of feedback, the SCLA "forgets" the phases of 
the different Fabry-Perot modes between two pulses, 
which leads to missing spectral correlation [Fig. 7(a)] and 
to an erratic change in the substructure between subse- 
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Fig. 5 .  Optical tristability, plotted as in Fig. 4, with J = 4J,, U:, = -0.5, 
a = 7 ,  tc = 16 ns, and maximum 1 E,, 1’ = n,. 

115 

(b) 
Fig. 6. (a) Scheme of ring configuration. (b) Injection current versus time 

quent pulses [Fig. 7(b)]. The gain depletion causes a sharp 
cutback in carrier density [Fig. 7(c)] during the pulse 
emission. This step leads to a widening of the SCLA Fa- 
bry-Perot-modes [Fig. 7(d)], when additionally the car- 
rier dependence of the refractive index (a = 3 instead of 
a = 0) is introduced. The spectral “rabbit ears” in Fig. 
7(d) are also found experimentally [ 161. The pulsewidth 
is not affected by a nonzero a. Note that the asymptotic 
pulse FWHM averaged over the last 20 pulses is 13 ps, 
which is the optimum to be reached with this configura- 
tion, with the given pumping pulse reptition time Tj and 
without feedback. With increasing Tj the pulsewidth 
slightly decreases. 

A. Low Feedback and High Rejectivities 
Fig. 8(a) and (b) shows the shortest possible pulses ob- 

tained with the same parameters as in Fig. 7(a)-(c), but 
with an external feedback rate of Re,, = 10% and an ap- 
propriately lowered maximum of the injection current. 
The FWHM (12 ps)  is slightly less than in Fig. 7 and the 
spectra exhibit a certain amount of correlation between 
subsequent pulses. The fine structure of subsequent pulses 
[Fig. 8(b)] is more stable than in Fig. 7(b), but small vari- 
ations for subsequent kT indicate that mode locking is not 
yet complete. This result prompts one to attempt to pro- 

(4 
Fig. 7. Simulation for periodic injection current without feedback. (J , , ,  

= 6.1 J,, CY = 0, w’ = ( U  - w O ) / A o F p  is normalized frequency, k r E  
N is index that labels subsequent emitted pulses, t’  is time scale for one 
pulse with total elapsed time t = krTJ + t ’ ,  and - T J / 2  < t ’  I T , / 2 . )  
(a) Power spectrum of output field 

II (h+ !/ ’ )a  
!‘(U’, k r )  - 1 1 E&,( t )  exp ( -  i ( w o  + a ’ A w F p ) t )  dt . 

( k 7 - 1 / 2 ) 7 1  

(b) Temporal evolution of normalized output intensity 

~ ~ ~ ~ t ( t ’ ,  k r ) J Z  = IE:w(t - k , ~ . ) \ ’ .  
(c) Camer density n/n,. (d) Influence of linewidth enhancement factor in 

the gain-switching regime (same plot as in (a), but with a = 3 instead 
of a = 0). 

duce still shorter and more coherent pulses by further in- 
creasing Rex,. 

B. High Feedback and High Rejectivities 
Fig. 9 with Rex, = 50% shows that the situation is, 

however, more complicated: Although there is complete 
coherence and form stability between subsequent pulses, 
the FWHM has drastically increased. The reason lies in 
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L 

i i o p s  

(b) 
Fig. 8. Simulation of ring configuration with low feedback and high re- 

flectivities (same parameters as in Fig. 7(a)-(c), but Re,, = 0.1 and lower 
maximum injection current ( J,,, = 4.5 J , )  in accordance with decreased 
effective dynamic threshold). (a) Power spectrum of output field. (b) 
Temporal evolution of output intensity. 

Fig. 9. Simulation of ring configuration with high feedback and high 
reflectivities (same parameters as in Fig. 8(b), but Re,, = 0.5, J,,, = 
2.4 J , ) .  

the SCLA facet reflectivities, which lead to a strong Fa- 
bry-Perot-type behavior of the SCLA and to a relatively 
large amount of reflected optical input, which puts the 
system off phase after the next round-trip. 

C. High Feedback and Low Rejlectivities 
The effects of reducing the SCLA facet reflectivities 

down to 0.01 (instead of R,  = R2 = 0 . 3 3 )  are shown in 
Fig. 10(a) and (b). The FWHM (21 ps) has decreased 
again, but is still larger than in the zero-feedback gain- 
switching regime. When CY # 0 is introduced now [Fig. 
lO(c)] the small variation of carrier density during the 
pulse's emission does not lead to a widening of the Fa- 
bry-Perot modes but to a frequency shift due to the low- 
ered effective laser threshold. 

The effect of a further reduction of the reflectivities is 
shown in Fig. 11. For values of about lop3 the same 
FWHM as in the gain-switching case can be achieved. 
The extremely small value of low5 leads to a FWHM of 
about 6 ps. At this point again, a comment on the numer- 
ical resolution is in order. NST was chosen equal to 2 lead- 

Fig. 10. Simulation of ring configuration with low feedback and low re- 
flectivities (same parameters as in Fig. 9, but with R , , 2  = 0.01, J,,, = 
1.35 J ,  = 2.8 Jn.,,,  where .To.,, is the injection current threshold for 
reflectivities of 0 .33) .  (a) Power spectrum. (b) Temporal evolution of 
the output intensity. (c) Influence of the linewidth enhancement factor 
in mode-locking regime (same plot as in (a), but with 01 = 3 instead of 
CY = 0) .  

FWHM 

A = 160 AoFp 
: ao = 40 nuFp 

D : A W g  = 10 A O F p  (:n** d 

to-@ IO' lo3 R , . ~  

Fig. 11. Pulsewidth versus reflectivities for different gain linewidths A u 8  
( 0 1  = 0, Re,, O.5,Jm,, = 0.54J, = 2.8J03,). 

ing to a time step length of 2 ps. Although a higher res- 
olution might be thought to be necessary to properly 
account for 6 ps pulses, tests with NST = 4 resulted in 
only slightly different FWHM. From further numerical 
checks we could exclude that the lower bound of the sim- 
ulated pulse length was limited by the low numerical res- 
olution. Also, the product of the pulse FWHM and the 
spectral bandwidth is at least by a factor 2 higher than for 
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a Gaussian (0 .88) ,  so that the pulsewidth is not Fourier- 
transform limited. 

It remains as a question, whether 6 ps are a lower limit 
imposed by the spectral gain linewidth A u g .  A repetition 
of the simulations with a spectral linewidth increased or 
decreased by a factor of 4 shows that only for R = 
there is a small broadening in the pulsewidth with de- 
creasing gain linewidth. Also, a lowering of the sponta- 
neous emission coefficient 0 by a factor of 10 effects a 
reduction of the FWHM by only 10%. This indicates that 
the Fabry-Perot character of the external-cavity/SCLA 
system mainly determines the lower limit of the FWHM 
for short pulse production by active mode locking (be- 
sides spontaneous emission). 

The dynamics of short pulse production by active mode 
locking is shown in Fig. 12. Obviously the establishment 
of a fixed phase relation between the external cavity 
modes, which leads to the desired short pulses, is a con- 
tinuous process which needs about 300-400 round trips 
to converge to the final asymptotic state. 

D. Detuning 
The introduction of a small amount of detuning ( T ,  = 

Tj k 2 ps B 0.4 % ) leads to incoherent pulses, to slight 
temporal fluctuations in the carrier density, and to a large 
increase in the pulse FWHM ( T, = Tj: FWHM = 21 ps, 
Fig. 10; TE = Tj + 2 ps: FWHM = 37 ps; TE = TJ - 2 
ps: FWHM = 39 ps). This change is significantly higher 
than expected from the analysis of [23]. 

E. Pumping Current 
In the gain-switching regime an increase of the injec- 

tion current intensity (with fixed width of the Gaussians) 
leads to still shorter pulses, but also to the onset of un- 
desired further relaxation oscillations. Mode locking, 
however, which occurs for significantly lower injection 
intensities, is affected in the following way: the increased 
injection current leads to increased optical pulse intensi- 
ties and thus to higher gain (and carrier) depletion during 
the emission of the pulse. Under the assumption that the 
ring configuration still behaves completely periodically 
(with period Tj) the increase of the carrier depletion is 
equivalent to an increase of higher order Fourier compo- 
nents in the temporal gain function. They are not included 
in the analytical solutions of [22] and [23], and lead to 
coupling between nonadjacent external modes. This cou- 
pling is then (and only then) in phase with the direct cou- 
pling when the gain is symmetric with respect to an ar- 
bitrary, but fixed time. As can be seen from the carrier 
density behavior in the gain-switching regime (Fig. 7) this 
symmetry does not exist. Hence the gain-depletion leads 
to a destruction of the mode-coupling mechanism as 
shown in Fig. 13, which was simulated with an injection 
current increased by 65% compared to the optimum 
(shortest possible pulses) current and leads to drastically 
broadened pulses. In contrast to that a raised injection 
current together with a “belated” ( TE = Tj + 2 ps) feed- 
back causes a drastically reduced pulse width (FWHM = 

O,O 5 0 k T  

Fig. 12. Dynamics of pulse-compression: FWHM of output intensity is 
plotted versus index kT that labels subsequent pulses, corresponding to 
number of round trips in ring configuration (CY = 0, Re,, = 0.5, J,,, = 
0.54 J, = 2.8 = lo-? 

5.5* 

P*  2 0  

2 5 6 p s  

(b) 
Fig. 13. Effect of too high an injection current ( TE = T, = 512 ps, RI,* 

= 0.01, CY = 0, Re,, = 0.5, J,,, = 1.3 J ,  = 2.7 J 0 . 3 3 ) .  The shortest 
pulses with FWHM = 20.8 ps were obtained for J,,, = 0.8 J,. (a) Tem- 
poral evolution of the output intensity. (b) Carrier density. 

12 ps). Here a direct transition to the gain switching re- 
gime occurs, because the “belated” preceding pulse de- 
pletes the carrier density after the emission of the present 
one and thus allows to use a higher injection current with- 
out inducing further relaxation oscillations. 

V. CONCLUSION 
The proposed novel simulation method is appropriate 

to treat a semiconductor laser amplifier with still reason- 
able computing effort for both time dependent optical in- 
put and time dependent injection current while including 
the carrier density dependence of the refractive index, the 
frequency dependence of the gain, and correct phase re- 
lationships of multiple reflections and optical input. Our 
method is applied to a linear configuration and to a ring 
configuration. 
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Our simulations of bi- or multistability in the optical 
input-output characteristic have revealed a strong depen- 
dence on the sweeping speed of the optical input which 
limits the switching speed to the timescale set by the car- 
rier recombination time. Optical multistability was only 
found for high injection current, high input, and an a- 
parameter of the order of 7. Additionally, the fan out of 
the multistable simulations in the regime above the laser 
threshold was always significantly lower than unity (i.e., 
input power always greater than output power) which will 
strongly limit possible applications. 

In ring configurations the production of short pulses by 
active mode locking appears to be mainly limited by the 
Fabry-Perot character of the system and not by the gain 
linewidth. 

From the variation of various parameters (a, TE, J,,,,,, 
R,,.) we obtain the prediction that the shortest pulses 

of about 6 ps can be obtained for a high optical feedback 
and very low facet reflectivities. This seems to be a gen- 
eral limit for active mode locking, and is also found ex- 
perimentally [ 171, [ 181. 

the gain line- 
width limit for the FWHM ( - 1 ps) cannot be reached. 
This indicates that locking of two external modes lying in 
different laser modes by active mode locking is either im- 
possible, or would require still lower facet reflectivities. 

Recently subpicosecond pulses were found by active 
mode locking by Corzine et al. [20]. Their work, how- 
ever, is not directly comparable as they observed the sub- 
picosecond pulses only for modulation with multiples of 
the external mode spacing frequency. It might also be 
conceivable that a very small amount of saturable absorp- 
tion combined with the high modulation frequencies leads 
to the short pulses observed. 

The injection current must be optimized individually in 
each case. Too high injection currents lead to the onset of 
relaxation oscillations in the gain-switching regime. Too 
high injection currents in the mode-locking regime, or too 
low currents in both regimes, lead to broadened pulses. 
The pulsewidth, however, is two or three orders of mag- 
nitude less sensitive to changes in the injection current 
than in [21], where a change of 1.5 % in the injection cur- 
rent increases the pulsewidth by 800% for pulsed injec- 
tion current. 

A detuning between optical round-trip time TE and 
pumping period TJ leads to less coupling between the ex- 
ternal modes and thus to an increase in the pulse FWHM, 
which is significantly larger than in the analytical approx- 
imation [23]. The decrease of the FWHM predicted by 
Demokan [21] for detuning frequencies of about 500 kHz 
was not analyzed as our lowest detuning frequency was 8 
MHz. In the gain-switching regime a “belated” feedback 
suppresses further relaxation oscillations and thus allows 
for higher injection current and slightly shorter pulses. 

The carrier dependence of the refractive index (a pa- 
rameter) leads to a broadening (in the gain-switching re- 
gime) or a shift (in the mode-locking regime) of the SCLA 
spectrum. We could not find significant effects of this upon 

Even for facet reflectivities down to 

the pulsewidth or the mode-locking properties, in agree- 
ment with experimental results [ 181. 

The influence of spontaneous emission on the pulse- 
width is very small. For 20 ps pulses, for example, a re- 
duction or increase of the spontaneous emission factor by 
a factor of ten does not effect a visible change in the 
FWHM. For 6 ps pulses the same variation causes a 
change in FWHM of about 10%. This is again in contrast 
to [21]. 
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