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Theory of Subpicosecond Pulse Generation by Active 
Modelocking of a Semiconductor Laser 

Amplifier in an External Cavity: 
Limits for the Pulsewidth 

Martin Schell, Andreas G. Weber, E. H. Bottcher, Eckehard Scholl, and Dieter Bimberg 

Abstract-Active modelocking of a semiconductor laser amplifier 
(SCLA) in an external cavity is theoretically modeled, using a cosh-*- 
description for the optical pulses. Analytical solutions are derived. The 
model includes finite gainwidth, which is shown to be of the largest 
importance for a correct description, and gain saturation. A lower limit 
of the optical pulsewidth is derived in terms of the gainwidth, the in- 
jection current, the external loss, and other parameters. In recent ex- 
periments Bowers et al. found, surprisingly, pulses being a factor of 
10 to 100 broader than the inverse gainwidth, and trailing pulses with 
an intensity almost of the same order of magnitude as the leading one 
even for SCLA facet reflectivities as low as lo-*. Both features are 
quantitatively explained by our theory. 

I. INTRODUCTION 
ENERATION of ultrashort optical pulses by various meth- G ods using semiconductor lasers is of great current interest 

[ 11-[ U ]  because of the potential applications in optical com- 
munication and measurement systems. As compared to gain 
switching, active modelocking requires more expensive and 
complex techniques but is superior concerning the amplitude 
and timing jitter and the minimum width of the obtainable pulses 
[ 11, [ 161-[ 181. Recent experimental results [ 11 show that 
sub-ps pulses can be obtained with this technique. 

While single pulse amplification [lo]-[ 141 and active mode- 
locking [l], [22]-[24] has been treated numerically by a number 
of authors, an analytical treatment of active modelocking has 
been only given by [19]-[21]. The analytical solutions pre- 
sented in [19] and [20] are not restricted in their applicability 
to any particular optical pulse shape and were derived in the 
frequency domain. Assuming a particular pulse shape and 
working in the time domain in a similar way, as done in [21], 
allows us to include the effects of gain saturation and to assume 
arbitrary injection pulses and nonsinusoidal gain curves, which 
is not done in [19] and [20]. Contrary to most of the numerical 
work [l] ,  [23], [24] we include the finite gainwidth. We are 
able to show that its neglect can lead to unrealistically short 
pulses. Our model explains quantitatively and to our knowledge 
for the first time, why the lower limit of the pulsewidth imposed 
by the finite gainwidth is not reached and why reflections at an 
antireflection (AR)-coated semiconductor laser amplifier 
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(SCLA) facet with 1 % reflectivity is sufficient to produce trail- 
ing pulses still having 50% of the leading pulse intensity. 

This paper is organized as follows. In Section I1 our theory 
is evaluated ‘‘locally”: the changes of the optical pulsewidth, 
the pulseheight, and the time at which the pulse maximum oc- 
curs, are calculated for a pulse propagation through an infini- 
tesimally thin slice of the SCLA. The effects of a Lorentzian 
shape of the gain rather than a constant gain are treated in Sec- 
tion 111, and in Section IV the integral equations for the changes 
in the pulse shape during one round-trip are given. Their eval- 
uation yields the dependence of the pulsewidth upon various 
parameters, which is presented in Section V. The effects of mul- 
tiple reflections caused by a nonzero SCLA facet reflectivity are 
discussed in Section VI, while in Section VI1 the approximation 
of the pulse shape by a cosh-2-function is justified. In Section 
VI11 we conclude and discuss how the pulsewidth can be further 
decreased and how the trailing pulses can be avoided. 

11. THE LOCAL MODEL 

Our model starts with the common rate equations [25] for the 
carrier density N(z, t) 

(1) 

and the traveling wave equation for the photon densities S *(z, 
t), traveling in the positive and negative z-direction, respec- 
tively: 

N, = -k No 
G J  

together with the boundary conditions (Fig. 1): 

S+(O, t) = R , S - ( O ,  t) (34  

S-(L,  t )  = R2Sf (L ,  t) + ReXt(l - RZ)*S’(L, t - T ~ ~ ~ )  (3b) 

Here N is the carrier density, q is the current injection effi- 
ciency, e is the elementary charge, d is the active layer thick- 
ness, J is the injection current density, r is the optical confine- 
ment factor, B is the rate coefficient for the spontaneous 
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Fig. 1 .  Scheme of the active mode-locking configuration 

emission, No is the transparency concentration. Go is the gain, 
which is at this stage of the model assumed to be constant for 
all optical frequencies, and K accounts for the losses inside the 
SCLA (without facet reflection losses). N, is the threshold for 
amplification one, i.e., the carrier density, for which an optical 
signal is neither amplified nor damped between the SCLA fac- 
ets. vg = t / ~ ~ ~ ~ ~  is the group velocity, where t is the length 
of the SCLA, 7SCLA is the SCLA single pass time, and T~~~ is 
the time for a round-trip in the external cavity (excluding the 
SCLA). R, and R, are the SCLA facet reflectivities and Rex, is 
the reflectivity of the external cavity. The SCLA-cavity system 
is shown in Fig. 1 .  

The main approximations made in (1)-(3) are as follows. The 
first approximation is a spatially constant injection current den- 
sity. Inhomogeneous injection currents can lead to regions of 
saturable absorption in the SCLA which would cause an addi- 
tional pulse shaping. Homogeneity is assumed for the sake of 
simplicity and to enable an analytic solution. Thus our model 
is restricted to SCLA’s with one electrical contact, driving the 
whole active area. The second is the use of photon densities 
rather than of amplitudes. Thus any phase relation between the 
internally (at the SCLA facets) or externally reflected optical 
field amplitude and the field inside the laser is neglected. The 
neglect of the phase of the internal field is justified, if the pulse- 
width is significantly shorter than the single pass time, as it is 
the case here. The phase relation between the field reflected 
from the external cavity and the field inside the laser may be 
neglected, because in a stable pulsating mode the laser is op- 
erated below threshold between two optical pulses, i.e., almost 
during the whole external round-trip time. During this time, 
which is about one order of magnitude longer than the photon 
lifetime, the SCLA “forgets” the phase of the internal field due 
to the spontaneous emission. The third is the neglect of spon- 
taneous emission in (2). For synchronously mode-locked dye 
lasers fluctuations in the pulse shape are found for incoherent 
spontaneous emission noise [28], [29]. In previous numerical 
work [22] we found stable, pulsating solutions also for a spon- 
taneous emission factor of using broader injection current 
pulses and longer cavities which leads, however, to signifi- 
cantly longer pulses than in this work. As our theory implicitly 
presupposes the existence of a stable pulsating solution, the ne- 
glect of spontaneous emission is unavoidable. Our theory pre- 
dicts a lower limit for the pulsewidth which can be reached for 
sufficiently low spontaneous emission only. The fourth includes 
a dispersion-free SCLA. The dispersion due to the camer den- 
sity dependence of the refractive index is very small, as the 
camer depletion due to the emission of the pulse is below 3% 
for realistic parameters (10). For gain switching, e.g., this vari- 
ation is about 10 times stronger and dispersion plays an impor- 
tant role. In previous work [22] we found a shift of the spectrum 
for a nonzero linewidth enhancement factor, but no effect on 
the pulsewidth. The effect of the material dispersion is assumed 
to be negligible due to the short length of the SCLA. For pulse- 
widths lower than 100 fs, however, this neglect can not be jus- 

tified [30]. And the last approximation is a dispersion-free ex- 
temal cavity, which can be desribed by an effective reflection 
coefficient Rex,. 

Introducing the normalized quantities 

which are denoted by lower case letters, ( 1 )  and (2) read 

(4) 

To enable an integration of (4) and (5) let us now consider a 
cosh-’ shaped optical pulse of width 7 peaked at t = to for z = 
0, traveling for simplicity in the positive z .direction: 

Here t‘ is the time relative to the peak of the optical pulse. To 
account for changes in the pulse shape so(z), 7 ( z ) ,  and phase 
to(z) those parameters are chosen as z dependent. To make an 
integration of (4) possible: 1 )  the injection current is expanded 
around t’ = 0 and 2) a fixed value of n,, is assumed on the right- 
hand side of (4) instead of n(z ,  t ) .  

The integration interval will be the “photon dominated phase,” 
which comprises an interval of several 7’s around to. The as- 
sumption 1) is justified for ps pulses. Assumption 2) is an ap- 
proximation to the exact solution of the differential equation (4) 
and is justified by the result of this analysis, namely that the 
camer density change due to stimulated emission is of the order 
of only 1 % .  

Now (7) can be integrated for a fixed position in the SCLA: 

t’ dj 
j (r‘  = 0) + - - (t’ = 0) - n:I 

2 dt 

n,, has been chosen as the starting value of the camer density, 
i.e., the value of n,  which an incoming pulse would see without 
spontaneous emission or current injection. 

For later use, the camer density changes due to current in- 
jection during the duration of a round-trip in the external cavity 

1.3, 

An, : = 1 b ( j ( t )  - dt (9) 
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and due to stimulated emission 
re., 

An,(z) : = - [ go (nst - no) [s-(z, 9)  + s+(z, t)] dr 

= -2 

= -4 gob, - no)so(Z)~(z) 

gdn, - n M z ,  0 dt 
--m 

are defined. 
With (6) and (8), (5) can be rewritten 

t' d j  = (nsI - 1 + bt' j(r'  = 0) + - - (r' = 0) - 
2 dr 

higher injection current and is therefore shifted backwards, 
while the trailing edge sees a lower injection current and is 
shifted forward. This is equivalent to pulse shortening. Note 
that according to (8c) for a negative injection current slope the 
pulsewidth always will tend to zero. The counteracting force, 
the finite gainwidth, will be introduced in the next chapter re- 
moving this effect. 

All described features are in principle valid for pulses of an 
arbitrary shape. Our analysis here is restricted to cosh-' pulses, 
because this is to our knowledge the only shape which remains 
invariant under a propagation as described by (4) and (5) and 
for which analytic results can be obtained. 

(10) 

111. THE GAIN LINEWIDTH 

As a pulse broadening term in (12c), the finite gain linewidth 
must be included. It will be done by amplifying the optical pulse 
in the frequency domain with the Lorentzian gain profile (1 1) 

(13) go Equation (1 1) is valid in a time domain of sufficiently small = 

+ [ET. t' where the cosh-* pulse is localized. Therefore we can expand 
tanh ( t ' / r )  = t ' / r .  Because (1 1) must hold for all allowed val- 

rately: 
ues Of t '*  the Of Order ' " 9  " ' 9  t ' 2  can be equated sepa- It will be shown later that it is sufficient to confine attention 

to a z-independent (to = 0) cosh-2-pulse 

( W  f(t) : = A ( 144 
cosh2 (17) 

- -  
dz U, 

dto rgo 
- = - 3 [b(j(t '  = 0) - nzI) - go(nst - no)so] 
dz 2v, with its Fourier transform F(w), 

(12b) 

with 

At this stage of the model a physical interpretation of (12) is 
useful. Equation (12a) describes the exponential amplification 
of an optical pulse in the SCLA, together with a saturation term 
characterized by a saturation intensity s,,~. This saturation is an 
effect of the gain depletion, and it guarantees stability of the 
pulse height against random fluctuations. 

Equation (12b) describes the result that the pulse can travel 
through the SCLA faster or slower than with its group velocity 
which is at first sight astonishing. This deviation is a conse- 
quence of the gain saturation: an amplification in a depletable 
medium shows a larger amplification for the leading edge of a 
pulse than for the trailing one, which is equivalent to a shift of 
the pulse maximum towards earlier times, described by (12b). 
Counteracting force is the injection current, which reduces de- 
pletion. To answer the question of the stability of the peak time 
to, consider an optical pulse in a stable ringing system with a 
random fluctuation towards later times. If the injection current 
increases during the time of pulse amplification the (randomly) 
delayed pulse sees a higher injection current and thus is delayed 
still more. So on the rising shoulder of the injection current no 
stable pulse amplification is possible in an external cavity. 

Equation (12c) describes the changes in the pulsewidth and 
can be interpreted in a similar way as (12b). Suppose that j ,  so, 
and n,, have values which lead to dro/dz= 0. Then (for a de- 
creasing injection current) the leading edge of the pulse sees a 

Any changes dF in F ( o )  can be interpreted either as a result of 
changes d r ,  dso in r ,  so 

or as a result of an amplification with g,, . dz ,  

Lo, J 
Expanding 

V 1 

gives an error of less than 1 % for r < 1 / K W .  The results of 
this analysis will show that this condition holds very well for 
experimentally reasonable parameters. Equating (15) and (16) 
under this approximation yields two relations for the changes in 
so and r due to the Lorentzian gain profile, when the first four 
orders of o are retained: 

dr  1 12 
dz r ( ~ 0 , ) ~  geff 
- - -- - 
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TABLE I 
PARAMETERS FOR THE CALCULATIONS 

transform limited with respect to the spectral gain linewidth [ 11, 
[16]-[18], [22]-[24]. It is evident from (18) that a complete 
theory of active modelocking must contain both the pulse shap- 
ing mechanism, which is included in the common traveling wave Unit Variable Symbol Value 

differential gain 
spontaneous emission coefficient 
optical confinement factor 
camer density for transparency 
group velocity 
gain linewidth 
distributed loss 
SCLA length 
SCLA transit time 
SCLA facet reflectivities 
reflectivity of the external cavity 
extemal cavity round-trip time 
injection current period 

1.8 . 
1.6 . 10-l’ 
0 .3  
1.2 . 1Ol8 
0.75 . 10’ 
100 
0.5 
300 
4 
1 ,  0 
0.4 
64 
72 

PS 

PS 

Neglecting the details of the amplification we set g,, := (In 
Vsa,)/(2L) where V,,, is the saturated or effective amplification 
for one round-trip, which must (for stable operation) equal the 
external cavity loss and the SCLA facet transmission loss 

1 
(1 - Rd2R,,, . “sa, = 

equation, and the pulse broadening, which requires an inclusion 
of the spectral gain dependence [22]. 

IV. THE INTEGRATED EQUATIONS 
For a complete analysis of the changes in T ,  to, so for one 

round-trip through the SCLA (12a), (12b), and (18) have to be 
integrated. The integration of (18) is already performed in (20). 
The small change in T for one round-trip justifies the assumption 
of T = constant for the integration of (12a) and (12b). Further- 
more, for simplicity R ,  = 1 and R2 = 0 is assumed and the 
depletion of carriers by the left traveling pulse is neglected in 
the amplification, when the pulse travels to the right through 
the already depleted medium. 

So (12a) and (12b) can be integrated from z = - L  to z = 
+ L  (Fig. 1). With the unsaturated amplification V: 

the saturation intensity S,,, defined in (12d), and the saturated 
amplification V,,,: 

For typical parameters ( T  = 1 ps, o, = 50 . 27r/rSCLA, v,,, 
- - 5, TSCLA = 4 ps, L = 3 0 0 ~ )  one obtains AT : = 2 L . d.r/dz 
= 0.0057 and 12/(7r~o,)~ = 0.0002, which justifies the neglect 

V 
“sa, = (22) 

1 + ( V -  1 )% 
Ssat of the second term in (17b). As a result, (18) contains together 

the pulse compression (12c) and the pulse broadening (17a): one obtains 

1 12 In V,, ~ 0 , o u t  = VsatS0,in (234 
(18) 

In (18) d j / d t  is the only term, which can vary significantly dur- 

dT - rgo T3b 9 (t‘ = 0) + - - - 
dz 4vg dt 7 2L ’ *’rg0L 

to.,,, - to,,” = - jb( jav(to - n:,) - go(nsl - n0)Ssat 
ub- 

ing one round-trip of the pulse through the SCLA. With an 
averaged (1 - y$)j (23b) 

. r L  

jav(t)  : = -!- 1 j ( t  - z/v , )  dz (19) where the subscripts “in” (“out”) denote the values for the 
incoming (outcoming) pulses, i.e., at z = -L and z = L, re- 
spectively. In (23b) it has been assumed that to is approximated 
by an average value on the RHS. This is justified by the result 
below that to varies only little. 

Additionally, the total camer density change An for one 
round-trip in the external cavity 

2L - L  

the integration of (18) and the steady-state condition 

dT 
O = s:,zdz 

An := AnJ + Ans 

can be calculated by an integration of (9) and (lo), if so is re- 
placed in (10) by its average value 

) yield for - dt ( t  = to) < 0 ( dJav(t) 

T =  (20) 

For typical parameters (Table I) and dj , , /dt  = - 1 /ps one ob- 
tains a pulsewidth of T = 1 ps connected with a time-gainwidth 
product of TO, = 27r . 16. 

hibits the usual inverse square-root dependence of the pulse- 
width on the gainwidth [20], [21] and the inverse fourth-root 
dependence on the modulation strength dj , , /dt ,  which is also 
found in more general approaches [ 191, [21]. Equation (20) ex- 
plains, to our knowledge for the first time, why the pulses pro- 
duced by active modelocking are far away from being Fourier- 

and is found to be 

Equation (20) is one of the main results of this paper. It ex- An = b[ j in ,  - n:,TeXl] - 

with 

re“, 

jint = ’j, j ( t )  dt. 
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Gaussian 

. . . . .. . . . 

Time ( ps ) 

Fig. 2. Plot of the two injection currents used for the calculations. The 
injection current pulses are repeted with the injection current period 7,. 

The necessary conditions for steady-state pulsations are 

Together with (20) these are four equations for the four un- 
known quantities 7 ,  n,,, and to. For a given injection cur- 
rent a solution of (20) and (24) can be found numerically. Note 
that our analysis is restricted to the case of synchronous pump- 
ing ( T ~  = T~~~ + 27SCLA), although asynchronous pumping could 
easily be introduced by adding an appropriate time delay to the 
left-hand side of (23b). Numerical solutions, however, show 
that for asynchronous pumping a stable pulsating solution often 
does not exist [28], thus invalidating the applicability of our 
theory. 

V. NUMERICAL RESULTS 

To become specific, the injection current is chosen as the 
positive portion of a sine-wave or as a Gaussian of comparable 
width (Fig. 2), with J,,, as the only free parameter. Fig. 3 
shows the calculated dependence of the pulse FWHM [FWHM 
= 1.7637, Fig. 3(a)], the pulse height so,out [Fig. 3(b)] and to 
[Fig. 3(c)] upon J,,,. For increasing injection current maxi- 
mum the pulse is emitted earlier, has a higher maximum value 
and becomes broader. While the first two features do not depend 
on the special injection current shape and result from the in- 
crease in the total number of injected camers the pulse broaden- 
ing is different for both injection current shapes. This becomes 
evident in the 7 versus to plot for the same J,,, variation. The 
minimum in 7 roughly coincides with that value of to, which 
minimizes the (negative) slope of the averaged injection current 
jav(t ) .  The applicable injection current is limited by a minimum 
level defined by the condition AnJ = 0 and by a maximum set 
by the maximum number of carriers, which can be depleted by 
an optical pulse with a given width and a height, which is lim- 
ited by the onset of gain saturation. For a nonzero SCLA facet 
reflectivity R, higher injection currents are applicable due to the 
occurrence of pulse trains rather than single pulses. 

Fig. 4 shows the dependence of the pulsewidth upon gain 
linewidth. The inverse square-root behavior of (20) is also re- 
produced very well in the complete solution for a given injec- 
tion current. To compare our results with experimental findings 
we estimate a square root gain-bandwidth product of &B = 

'1.0 1.2 
In]. Current Maximum ( Normaltzed ) 

(a) 

Inj. Current Maximum ( Normalized ) 

(b) 

Inj. Current Maximum ( Normalized ) 

(C) 

\ 

Fig. 3. Dependence of the pulse shape upon the pump strength. Equations 
(20) and (24) are solved for the two injection currents shown in Fig. 2.  
The injection current maximum is normalized to the value which is nec- 
essary to balance the spontaneous emission. (a) Pulsewidth (FWHM) ver- 
sus injection current maximum, (b) pulseheight so,oul versus injection cur- 
rent maximum, (c) delay between the optical pulse and the injection current 
maximum, (d) pulsewidth (FWHM) versus delay time. 

20 THz [31]. This corresponds to a choice of us = 100 ~ / 7 ~ ~ ~ ~  

in our parameters. The resulting FWHM of 1.2 ps (Fig. 4) is 
slightly shorter than measured with a monolithic integrated ac- 
tive modelocking device (1.4 ps) [27] and twice as long as 
obtained in an external cavity configuration (0.6 ps) [ 11. This 
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Fig. 4. Pulsewidth versus gain linewidth. The gain linewidth is plotted in 
units of Aw = X / T ~ , - ~ ~ ,  the different frequency of the SCLA Fabry-Perot 
modes. 

R I  wlh ( 2% ] 

Direct Integration 

ooW 10 20 

Time ( ps ) 

(a) 

Direct Integration 
- 3  

-0 1 0  20 

Time ( ps ) 

(b) 
Fig. 5 .  Test of the cosh-*-approximation. Equations (1) and (2) are nu- 
merically integrated with R 2  = for two different values of the gain- 
width w8 and compared to the best fit obtainable with (25a). (a) w8 = 
~ ~ * / T s c L A ,  (b) OK = ~ ~ ~ * / T s c L A .  

deviation might be caused by additional pulse shortening effects 
in the laser (saturable absorption in aged regions of the SCLA). 

VI. MULTIPLE REFLECTIONS 
Up to this stage of the model R2 was set equal to zero to 

exclude multiple reflections. Experimental results [ 13 show that 
a nonzero R,, even as low as leads to trailing 
pulses with a time delay of 2 T~~~~ and a magnitude of about 
50% of the leading pulse. This was confirmed by numerical 
calculations [ 11. We also performed a direct numerical integra- 
tion of the traveling wave equation and obtained the pulse trains 
shown in Fig. 5(a) and (b) with the parameters listed in Table 
I (except R, = and with an injection current optimized 
for shortest pulsewidth. The Lorentzian gain shape was in- 
cluded in this integration by a convolution with exp ( - w R t ) .  
Details of the integration procedure will be elaborated in a sep- 
arate paper. Contrary to the simulations in [l], [23], and [24], 

* * 

TABLE I1 
FIT ERRORS FOR VARIOUS FIT FUNCTIONS~ 

Fit Function Gaussian cosh-* cosh-' 

data from Fig. 5(a); A = 13% 8% 6% 
data from Fig. 5(b); A = 14% 9% 7% 

"The results d(r) of the direct integration plotted in Fig. 5 are fitted with 
three different fit functions f ( t ) .  The error A is defined as: 

1 If(0 - 401 dr 
A =  1 Id(0l dr 

which did not include the finite gainwidth we found a depen- 
dence of the pulsewidth on the gainwidth. 

The nonzero R2 can be included in this analysis by assuming 
a pulse train 

so,i(z) . s(2, t )  := c 
cosh2 (&)' 

r; := t - & J i ( Z )  - 4 
VR 

to, ,  = t0 . i -  I + 2TSCLA + At0.i; At0.i << TSCLA 

T~ = T~ +  AT^;  AT^ << T~ (23)) 

rather than a single pulse. Although a complete evaluation will 
be given elsewhere, the question, why such small values of R2 
lead to trailing pulses of the same order of magnitude as the 
leading one, can be identified at this point as a question of sta- 
bility. Assume that after the emission of the first pulse the SCLA 
is pumped sufficiently to reach the camer density which is nec- 
essary for equality of unsaturated gain and external losses. Then 
(24) is valid again, but with a slightly changed value of VSat 

(26) 
Val 

VsaI,l = 
1 + Re,, 

Thus the heights of the trailing pulses are defined by nearly 
the same stability condition as the first one. From (12b) with 
dto/dz = 0 follows that in good approximation the height of 
any stable pulse is proportional tojav(to) - n:t. Hence the height 
of the trailing pulses reflects the temporal evolution of the in- 
jection current, rather than the magnitude of the internal SCLA 
facet reflectivity R,. 

so, I 

VII. How GOOD Is THE COSH-* APPROXIMATION? 
To test the validity of the cosh-2 approximation the pulses 

resulting from a direct integration of (1)-(3) (Fig. 5 )  are com- 
pared to the best fit obtainable with a fit function consisting of 
cosh-' pulses (25a). The fit error for both cases using two other 
fit functions is presented in Table 11. 

For both numerical curves the cosh-' fit would be apparently 
the best. This is in accordance with experimental results [l]. 
Unfortunately, assumption of cosh-' pulses does not allow an 
analytic solution. Fig. 5 shows, however, that the numerical 
result can be fitted very well by a superposition of two or, re- 
spectively, three cosh-' pulses. 
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VIII. CONCLUSION 
Our theory gives analytic expressions for the pulse broaden- 

ing and pulse shortening mechanisms as a function of the pump- 
ing strength, its derivation with respect to the time, the gain- 
width and other parameters. It is shown that inclusion of both 
mechanisms is necessary to obtain finite pulsewidths. A tuning 
of the pulsewidth towards smaller values is difficult, because all 
parameters, except the spectral gain linewidth, influence the 
pulsewidth only proportionally to their fourth root. The pulse- 
width can be lowered by decreasing the external losses and by 
decreasing the fall time of the injection current pulse. The height 
of the emitted pulses is mainly determined by the amplitude of 
the injection current at the time of their emission. So the emis- 
sion of pulse trains, rather than single pulses, resulting from 
nonzero facet reflectivities, might disappear for injection cur- 
rent pulses with a fall time significantly lower than the SCLA 
round-trip time, which is presently unrealistic. Other possibil- 
ities to avoid the trailing pulses are the use of lasers with tilted 
facets [26] or the monolithic integration of the whole cavity 
t271. 
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