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Theory of Subpicosecond Pulse Generation by Active
Modelocking of a Semiconductor Laser
Amplifier in an External Cavity:

Limits for the Pulsewidth

Martin Schell, Andreas G. Weber, E. H. Bottcher, Eckehard Schéll, and Dieter Bimberg

Anet,

Abstract—Active modelocking of a laser amplifier
(SCLA) in an external cavity is theoretically modeled, using a cosh~2-
description for the optical pulses. Analytical solutions are derived. The
model includes finite gainwidth, which is shown to be of the largest
importance for a correct description, and gain saturation. A lower limit
of the optical pulsewidth is derived in terms of the gainwidth, the in-
Jjection current, the external loss, and other parameters. In recent ex-
periments Bowers ef al. found, surprisingly, pulses being a factor of
10 to 100 broader than the inverse gainwidth, and trailing pulses with
an intensity almost of the same order of magnitude as the leading one
even for SCLA facet reflectivities as low as 1072, Both features are
quantitatively explained by our theory.

I. INTRODUCTION

ENERATION of ultrashort optical pulses by various meth-

ods using semiconductor lasers is of great current interest
[1]-[15] because of the potential applications in optical com-
munication and measurement systems. As compared to gain
switching, active modelocking requires more expensive and
complex techniques but is superior concerning the amplitude
and timing jitter and the minimum width of the obtainable pulses
[1], [16]-[18]. Recent experimental results [1] show that
sub-ps pulses can be obtained with this technique.

While single pulse amplification [10]-[14] and active mode-
locking [1], [22]-[24] has been treated numerically by a number
of authors, an analytical treatment of active modelocking has
been only given by [19]-[21]. The analytical solutions pre-
sented in [19] and [20] are not restricted in their applicability
to any particular optical pulse shape and were derived in the
frequency domain. Assuming a particular pulse shape and
working in the time domain in a similar way, as done in [21],
allows us to include the effects of gain saturation and to assume
arbitrary injection pulses and nonsinusoidal gain curves, which
is not done in [19] and [20]. Contrary to most of the numerical
work [1], [23], [24] we include the finite gainwidth. We are
able to show that its neglect can lead to unrealistically short
pulses. Our model explains quantitatively and to our knowledge
for the first time, why the lower limit of the pulsewidth imposed
by the finite gainwidth is not reached and why reflections at an
antireflection (AR)-coated semiconductor laser amplifier
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(SCLA) facet with 1% reflectivity is sufficient to produce trail-
ing pulses still having 50% of the leading pulse intensity.

This paper is organized as follows. In Section II our theory
is evaluated ‘‘locally’’: the changes of the optical pulsewidth,
the pulseheight, and the time at which the pulse maximum oc-
curs, are calculated for a pulse propagation through an infini-
tesimally thin slice of the SCLA. The effects of a Lorentzian
shape of the gain rather than a constant gain are treated in Sec-
tion III, and in Section IV the integral equations for the changes
in the pulse shape during one round-trip are given. Their eval-
uation yields the dependence of the pulsewidth upon various
parameters, which is presented in Section V. The effects of mul-
tiple reflections caused by a nonzero SCLA facet reflectivity are
discussed in Section VI, while in Section VII the approximation
of the pulse shape by a cosh™-function is justified. In Section
VIII we conclude and discuss how the pulsewidth can be further
decreased and how the trailing pulses can be avoided.

II. THE LocAL MODEL

Our model starts with the common rate equations {25] for the
carrier density N(z, 1)
NGz, 1
ot

gil(t) = BN? = Go(N = No)[S7(z, ) + §7(z, 1]

0]

and the traveling wave equation for the photon densities S *(z,
t), traveling in the positive and negative z-direction, respec-
tively:

Sz, n 5%z,
+ v,

5 e = TGNV — N)S*@,n  a)
N, == + N, 2b)
Gol'
together with the boundary conditions (Fig. 1):
$*(0, ) = RiS(O, 1) (3a)
ST(L,) =RS*T(L, t) + Re(1 — R)’S*(L,t — 7o) (3b)

Here N is the carrier density, % is the current injection effi-
ciency, e is the elementary charge, d is the active layer thick-
ness, J is the injection current density, I' is the optical confine-
ment factor, B is the rate coefficient for the spontaneous
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Fig. 1. Scheme of the active mode-locking configuration.

emission, N, is the transparency concentration. Gj is the gain,
which is at this stage of the model assumed to be constant for
all optical frequencies, and k accounts for the losses inside the
SCLA (without facet reflection losses). N, is the threshold for
amplification one, i.e., the carrier density, for which an optical
signal is neither amplified nor damped between the SCLA fac-
ets. v, = L/7scpa is the group velocity, where L is the length
of the SCLA, 75c.4 is the SCLA single pass time, and 7., is
the time for a round-trip in the external cavity (excluding the
SCLA). R, and R, are the SCLA facet reflectivities and R,,, is
the reflectivity of the external cavity. The SCLA-cavity system
is shown in Fig. 1.

The main approximations made in (1)-(3) are as follows. The
first approximation is a spatially constant injection current den-
sity. Inhomogeneous injection currents can lead to regions of
saturable absorption in the SCLA which would cause an addi-
tional pulse shaping. Homogeneity is assumed for the sake of
simplicity and to enable an analytic solution. Thus our model
is restricted to SCLA’s with one electrical contact, driving the
whole active area. The second is the use of photon densities
rather than of amplitudes. Thus any phase relation between the
internally (at the SCLA facets) or externally reflected optical
field amplitude and the field inside the laser is neglected. The
neglect of the phase of the internal field is justified, if the pulse-
width is significantly shorter than the single pass time, as it is
the case here. The phase relation between the field reflected
from the external cavity and the field inside the laser may be
neglected, because in a stable pulsating mode the laser is op-
erated below threshold between two optical pulses, i.e., almost
during the whole external round-trip time. During this time,
which is about one order of magnitude longer than the photon
lifetime, the SCLA “‘forgets’” the phase of the internal field due
to the spontaneous emission. The third is the neglect of spon-
taneous emission in (2). For synchronously mode-locked dye
lasers fluctuations in the pulse shape are found for incoherent
spontaneous emission noise [28], [29]. In previous numerical
work [22] we found stable, pulsating solutions also for a spon-
taneous emission factor of 10™*, using broader injection current
pulses and longer cavities which leads, however, to signifi-
cantly longer pulses than in this work. As our theory implicitly
presupposes the existence of a stable pulsating solution, the ne-
glect of spontaneous emission is unavoidable. Our theory pre-
dicts a lower limit for the pulsewidth which can be reached for
sufficiently low spontaneous emission only. The fourth includes
a dispersion-free SCLA. The dispersion due to the carrier den-
sity dependence of the refractive index is very small, as the
carrier depletion due to the emission of the pulse is below 3%
for realistic parameters (10). For gain switching, e.g., this vari-
ation is about 10 times stronger and dispersion plays an impor-
tant role. In previous work [22] we found a shift of the spectrum
for a nonzero linewidth enhancement factor, but no effect on
the pulsewidth. The effect of the material dispersion is assumed
to be negligible due to the short length of the SCLA. For pulse-
widths lower than 100 fs, however, this neglect can not be jus-
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tified [30]. And the last approximation is a dispersion-free ex-
ternal cavity, which can be desribed by an effective reflection
coefficient R,,,.

Introducing the normalized quantities

N N, *
n=—;  nyg==2 st=3,

N, N, N,
..o J
J = W BN b=BN; g = GN,;

which are denoted by lower case letters, (1) and (2) read

an(z, 1)

FYa bLi() — 1°] — gon —~ nY)ls*(z, ) + 57(z, D]

@

as*(z, b ast(z, 1)
ot = e = Dst@n. )
To enable an integration of (4) and (5) let us now consider a
cosh 2 shaped optical pulse of width 7 peaked at ¢ = f, forz =
0, traveling for simplicity in the positive z direction:

A )
cosh? <—> o
7(2)

Here ¢’ is the time relative to the peak of the optical pulse. To
account for changes in the pulse shape sy(z), 7(z), and phase
ty(z) those parameters are chosen as z dependent. To make an
integration of (4) possible: 1) the injection current is expanded
around ¢’ = 0 and 2) a fixed value of n,, is assumed on the right-
hand side of (4) instead of n(z, r).

sz, ) =

oz, | ., A, _2}
o —b|:](t =0) +1¢ dt(t =0) - ny
— &olng — ng)s(z, 1) @)

The integration interval will be the ‘‘photon dominated phase,”’
which comprises an interval of several 7’s around f,. The as-
sumption 1) is justified for ps pulses. Assumption 2) is an ap-
proximation to the exact solution of the differential equation (4)
and is justified by the result of this analysis, namely that the
carrier density change due to stimulated emission is of the order
of only 1%.

Now (7) can be integrated for a fixed position in the SCLA:

n(t') = ny + bt'[j(r' =0) + g:—{(:' =0) - nf,]
— 8o (ny — ng)se()7(2) [tanh (T(t_’z)> + 1} (8)

ng has been chosen as the starting value of the carrier density,
i.e., the value of n, which an incoming pulse would see without
spontaneous emission or current injection.

For later use, the carrier density changes due to current in-
jection during the duration of a round-trip in the external cavity

Any SO b(j@) — n3) dt ()
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and due to stimulated emission

Any(z) 1= — SO 8o (ny — no)ls™(z, 1) + s7(z, N at

Q

-2 S 8olng — no)s(z, t) dt

= —4 go(ny — ne)so(2)7(z) (10

are defined.
With (6) and (8), (5) can be rewritten

ds, U\ (1dy ¢ odr
— + 2sptanh (— ) (- — + 5 —
dz So 1@ <T> <‘r dz 7 dz>

_Lg

Ug

o tdi,,
<"s‘— L+ b [J(t LR AG =0)—n§.]

= golny — no)se(@)7(2) {tanh <—’—> + 1]) so@. (1)
()

Equation (11) is valid in a time domain of sufficiently small
¢’ where the cosh™2 pulse is localized. Therefore we can expand
tanh (¢' /7) = ' /7. Because (11) must hold for all allowed val-
ues of ¢/, the terms of order #'°, ¢'!, 2 can be equated sepa-
rately:

dsg T
—"=ﬁ<nst—1)<1—ﬂ>so
Uy s,

12
a . (12a)

dty _ T oy 2
& 2, 7 b = 0) — n3) — golny — ng)sol  (12b)
dar _Tg 5 & , _
& 4w, Tho @ =0 (120)
with
ng — 1
Seat (12d)

B golng — no)t’

At this stage of the model a physical interpretation of (12) is
useful. Equation (12a) describes the exponential amplification
of an optical pulse in the SCLA, together with a saturation term
characterized by a saturation intensity s,,,. This saturation is an
effect of the gain depletion, and it guarantees stability of the
pulse height against random fluctuations.

Equation (12b) describes the result that the pulse can travel
through the SCLA faster or slower than with its group velocity
which is at first sight astonishing. This deviation is a conse-
quence of the gain saturation: an amplification in a depletable
medium shows a larger amplification for the leading edge of a
pulse than for the trailing one, which is equivalent to a shift of
the pulse maximum towards earlier times, described by (12b).
Counteracting force is the injection current, which reduces de-
pletion. To answer the question of the stability of the peak time
1y, consider an optical pulse in a stable ringing system with a
random fluctuation towards later times. If the injection current
increases during the time of pulse amplification the (randomly)
delayed pulse sees a higher injection current and thus is delayed
still more. So on the rising shoulder of the injection current no
stable pulse amplification is possible in an external cavity.

Equation (12c) describes the changes in the pulsewidth and
can be interpreted in a similar way as (12b). Suppose that j, o,
and ny have values which lead to dty/dz= 0. Then (for a de-
creasing injection current) the leading edge of the pulse sees a
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higher injection current and is therefore shifted backwards,
while the trailing edge sees a lower injection current and is
shifted forward. This is equivalent to pulse shortening. Note
that according to (8¢) for a negative injection current slope the
pulsewidth always will tend to zero. The counteracting force,
the finite gainwidth, will be introduced in the next chapter re-
moving this effect.

All described features are in principle valid for pulses of an
arbitrary shape. Our analysis here is restricted to cosh ™ pulses,
because this is to our knowledge the only shape which remains
invariant under a propagation as described by (4) and (5) and
for which analytic results can be obtained.

III. THE GAIN LINEWIDTH

As a pulse broadening term in (12c), the finite gain linewidth
must be included. It will be done by amplifying the optical pulse
in the frequency domain with the Lorentzian gain profile

glw) = —8° . a3)
1+ [i}
W

It will be shown later that it is sufficient to confine attention
to a z-independent (f, = 0) cosh ™ >-pulse

LY
f@ = —Ot (14a)
cosh? <—>
T
with its Fourier transform F(w),
1 2
Fw) = 5 UL (14b)

WAT
i (€77
simn (427)
Any changes dF in F(w) can be interpreted either as a result of
changes dr, dsq in 7, 5,
I _ (o2 I e _TT
F tanh (y)/ 7 So 2

or as a result of an amplification with g.¢ * dz,

dF .
F = LZ dz. 16)
- H
W
Expanding
y . 1
tanh (y) Y .
-= 4+
=3 o(y")

gives an error of less than 1% for 7 < 1/ww. The results of
this analysis will show that this condition holds very well for
experimentally reasonable parameters. Equating (15) and (16)
under this approximation yields two relations for the changes in
so and 7 due to the Lorentzian gain profile, when the first four
orders of w are retained:

dr 1 12

== 17

& 7 (may) Lefr (17a)

ds 12

- [l ~ Gra) )z} So8err (176)
&
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TaBLE I
PARAMETERS FOR THE CALCULATIONS

Variable Symbol Value Unit
differential gain G, 1.8-10°° cm®/s
spontaneous emission coefficient B 1.6 - 107" cm’/s
optical confinement factor r 0.3
carrier density for transparency No 1.2 - 10" cm?®
group velocity v, 0.75 - 10® m/s
gain linewidth W, 100 1/ps
distributed loss K 0.5 1/ps
SCLA length L 300 pum
SCLA transit time TSCLA 4 ps
SCLA facet reflectivities R, R, 1,0
reflectivity of the external cavity R.. 0.4
external cavity round-trip time Text 64 ps
injection current period T 72 ps

Neglecting the details of the amplification we set g+ := (In
Vi) /(2L) where V,, is the saturated or effective amplification
for one round-trip, which must (for stable operation) equal the
external cavity loss and the SCLA facet transmission loss

1
Vo = =55
(1 = Ry)"Rexe

For typical parameters (7 = 1 ps, w, = 50 - 27 /75cpa, Viu
=5, 7scra = 4 ps, L = 300p) one obtains A7 := 2L - dr/dz
= 0.0057 and 12 /(w7w,)* = 0.0002, which justifies the neglect
of the second term in (17b). As a result, (18) contains together
the pulse compression (12c) and the pulse broadening (17a):

dr  Tg 5 dj
T8 T —g)+
& a, Ca® 7O

I 12 InV,
-— M Vea . (18)
7 (rwy)” 2L

In (18) dj /dt is the only term, which can vary significantly dur-
ing one round-trip of the pulse through the SCLA. With an
averaged

1 L
j = j(t — 1
Jav(® oL S_Lj(t z/v,) dz (19)
the integration of (18) and the steady-state condition
Lodr
= — d
S—L dz z
dj (¢
yield (for Bl (, _ 1 < 0>
dt
1/4
24 (In V) v,
T = » (20
(7w ) TgoLb % (t =10

For typical parameters (Table I) and dj,, /dt = —1/ps one ob-
tains a pulsewidth of 7 = 1 ps connected with a time-gainwidth
product of 7w, = 27 - 16.

Equation (20) is one of the main results of this paper. It ex-
hibits the usual inverse square-root dependence of the pulse-
width on the gainwidth [20], [21] and the inverse fourth-root
dependence on the modulation strength dj,, /dt, which is also
found in more general approaches [19], [21]. Equation (20) ex-
plains, to our knowledge for the first time, why the pulses pro-
duced by active modelocking are far away from being Fourier-
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transform limited with respect to the spectral gain linewidth [1],
[16]-[18], [22]}~[24]. It is evident from (18) that a complete
theory of active modelocking must contain both the pulse shap-
ing mechanism, which is included in the common traveling wave
equation, and the pulse broadening, which requires an inclusion
of the spectral gain dependence [22].

IV. THE INTEGRATED EQUATIONS

For a complete analysis of the changes in 7, 1y, s, for one
round-trip through the SCLA (12a), (12b), and (18) have to be
integrated. The integration of (18) is already performed in (20).
The small change in 7 for one round-trip justifies the assumption
of 7 = constant for the integration of (12a) and (12b). Further-
more, for simplicity R, = 1 and R, = 0 is assumed and the
depletion of carriers by the left traveling pulse is neglected in
the amplification, when the pulse travels to the right through
the already depleted medium.

So (12a) and (12b) can be integrated from z = ~Lto z =
+L (Fig. 1). With the unsaturated amplification V:

2L
V =exp [I‘go(ns. =D L—,} en
g

the saturation intensity S, defined in (12d), and the saturated
amplification V,:
| 4
Vg =——————— 22)
S0
1+ - 1>t

sat
one obtains

(23a)

S0,0ut = VsatS0,in
2
7 T'goL . 2
to.om — fo,in = v b(juty — ng) — golny — No)Ssa
1

l_ansal}
InV

c

(23b)

where the subscripts ‘‘in’’ (‘‘out’’) denote the values for the
incoming (outcoming) puilses, i.e., at z = —L and z = L, re-
spectively. In (23b) it has been assumed that ¢, is approximated
by an average value on the RHS. This is justified by the result
below that ¢, varies only little.

Additionally, the total carrier density change An for one
round-trip in the external cavity

An 1= An; + Ang

can be calculated by an integration of (9) and (10), if so is re-
placed in (10) by its average value

1t
3 S . SodZ = Sg (l

and is found to be

In Vi,
inV

2v, ln[ 14 ]
TgoL Vsat

An = bljw — nleexl] - (23¢)
with

Jim = g Jj(@du.
0
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Fig. 2. Plot of the two injection currents used for the calculations. The
injection current pulses are repeted with the injection current period 7,.

The necessary conditions for steady-state pulsations are

Vit = 1

w = T RyR. (24a)

In Vg,
InV

Jalto) = 3 (g - no)sm<1 -

20 [_V_]
gL V.

sat

> + n  (24b)

blji — ngl‘rext] = (24¢)

Together with (20) these are four equations for the four un-
known quantities s, ;,, 7, n,, and #,. For a given injection cur-
rent a solution of (20) and (24) can be found numerically. Note
that our analysis is restricted to the case of synchronous pump-
ing (7; = Tex + 27scLA), although asynchronous pumping could
easily be introduced by adding an appropriate time delay to the
left-hand side of (23b). Numerical solutions, however, show
that for asynchronous pumping a stable pulsating solution often
does not exist [28], thus invalidating the applicability of our
theory.

V. NUMERICAL RESULTS

To become specific, the injection current is chosen as the
positive portion of a sine-wave or as a Gaussian of comparable
width (Fig. 2), with J_,, as the only free parameter. Fig. 3
shows the calculated dependence of the pulse FWHM [FWHM
= 1.7637, Fig. 3(a)], the pulse height s, ., [Fig. 3(b)] and ¢,
[Fig. 3(c)] upon J,.,. For increasing injection current maxi-
mum the pulse is emitted earlier, has a higher maximum value
and becomes broader. While the first two features do not depend
on the special injection current shape and result from the in-
crease in the total number of injected carriers the pulse broaden-
ing is different for both injection current shapes. This becomes
evident in the 7 versus t, plot for the same J,,,, variation. The
minimum in 7 roughly coincides with that value of #,, which
minimizes the (negative) slope of the averaged injection current
Jav(®. The applicable injection current is limited by a minimum
level defined by the condition An; = 0 and by a maximum set
by the maximum number of carriers, which can be depleted by
an optical pulse with a given width and a height, which is lim-
ited by the onset of gain saturation. For a nonzero SCLA facet
reflectivity R, higher injection currents are applicable due to the
occurrence of pulse trains rather than single pulses.

Fig. 4 shows the dependence of the pulsewidth upon gain
linewidth. The inverse square-root behavior of (20) is also re-
produced very well in the complete solution for a given injec-
tion current. To compare our results with experimental findings
we estimate a square root gain-bandwidth product of JGB =
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Fig. 3. Dependence of the pulse shape upon the pump strength. Equations
(20) and (24) are solved for the two injection currents shown in Fig. 2.
The injection current maximum is normalized to the value which is nec-
essary to balance the spontaneous emission. (a) Pulsewidth (FWHM) ver-
sus injection current maximum, (b) pulseheight s, ., versus injection cur-
rent maximum, (c) delay between the optical pulse and the injection current
maximum, (d) pulsewidth (FWHM) versus delay time.

20 THz [31]. This corresponds to a choice of w, = 100 7 /75cLa
in our parameters. The resulting FWHM of 1.2 ps (Fig. 4) is
slightly shorter than measured with a monolithic integrated ac-
tive modelocking device (1.4 ps) [27] and twice as long as
obtained in an external cavity configuration (0.6 ps) [1]. This




SCHELL et al.: SUBPICOSECOND PULSE GENERATION

10 =

FWHM (ps }

i
0.1 | 1

10 100
Gain Linewidth (Aw)

1000

Fig. 4. Pulsewidth versus gain linewidth. The gain linewidth is plotted in
units of Aw = % /Tscpa, the different frequency of the SCLA Fabry-Perot
modes.
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Fig. 5. Test of the cosh™2-approximation. Equations (1) and (2) are nu-
merically integrated with Ry = 10™* for two different values of the gain-
width w, and compared to the best fit obtainable with (25a). (a) w, =
6{)"l'/‘fscu\y (b) we = XZOI/TSCLA'

deviation might be caused by additional pulse shortening effects
in the laser (saturable absorption in aged regions of the SCLA).

VI. MULTIPLE REFLECTIONS

Up to this stage of the model R, was set equal to zero to
exclude multiple reflections. Experimental results [1] show that
a nonzero R,, even as low as 107 -+ - 1072, leads to trailing
pulses with a time delay of 2 75cp.4 and a magnitude of about
50% of the leading pulse. This was confirmed by numerical
calculations [1]. We also performed a direct numerical integra-
tion of the traveling wave equation and obtained the pulse trains
shown in Fig. 5(a) and (b) with the parameters listed in Table
I (except R, = 107*) and with an injection current optimized
for shortest pulsewidth. The Lorentzian gain shape was in-
cluded in this integration by a convolution with exp (—w,?).
Details of the integration procedure will be elaborated in a sep-
arate paper. Contrary to the simulations in {1], [23], and [24],
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TaBLE II
FiT ERRORS FOR VARIOUs FiT FUNCTIONS®
Fit Function Gaussian cosh™? cosh™'
data from Fig. 5(a); A = 13% 8% 6%
data from Fig. 5(b); A = 14% 9% 7%

“The results d(¢) of the direct integration plotted in Fig. 5 are fitted with
three different fit functions f(r). The error A is defined as:

S | f() = d()| dt
A=s—er———

g |d@)| dr

which did not include the finite gainwidth we found a depen-
dence of the pulsewidth on the gainwidth.

The nonzero R, can be included in this analysis by assuming
a pulse train

» 50,:(2) .
i 2t ’
cosh <7'i (Z)>

Z
t— 15, — —
vg

sz, D : (25a)

t:

to; =toi—1 + 27scLa + Aloi;  Algi << Tscra

7; = 19 + A7} AT, << 79 (25b)
rather than a single pulse. Although a complete evaluation will
be given elsewhere, the question, why such small values of R,
lead to trailing pulses of the same order of magnitude as the
leading one, can be identified at this point as a question of sta-
bility. Assume that after the emission of the first pulse the SCLA
is pumped sufficiently to reach the carrier density which is nec-
essary for equality of unsaturated gain and external losses. Then
(24) is valid again, but with a slightly changed value of V,,

Vea 26)

Vsal,l = s, .
1+ Ry 2
So,1

Thus the heights of the trailing pulses are defined by nearly
the same stability condition as the first one. From (12b) with
dty/dz = O follows that in good approximation the height of
any stable pulse is proportional to j,,(t,) — n%. Hence the height
of the trailing pulses reflects the temporal evolution of the in-
jection current, rather than the magnitude of the internal SCLA
facet reflectivity R,.

VII. How Goob Is THE COSH™ 2 APPROXIMATION?

To test the validity of the cosh™? approximation the pulses
resulting from a direct integration of (1)-(3) (Fig. 5) are com-
pared to the best fit obtainable with a fit function consisting of
cosh ™2 pulses (25a). The fit error for both cases using two other
fit functions is presented in Table II.

For both numerical curves the cosh ™' fit would be apparently
the best. This is in accordance with experimental resuits [1].
Unfortunately, assumption of cosh™' pulses does not allow an
analytic solution. Fig. 5 shows, however, that the numerical
result can be fitted very well by a superposition of two or, re-
spectively, three cosh™? pulses.
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VIII. CONCLUSION

Our theory gives analytic expressions for the pulse broaden-
ing and pulse shortening mechanisms as a function of the pump-
ing strength, its derivation with respect to the time, the gain-
width and other parameters. It is shown that inclusion of both
mechanisms is necessary to obtain finite pulsewidths. A tuning
of the pulsewidth towards smaller values is difficult, because all
parameters, except the spectral gain linewidth, influence the
pulsewidth only proportionally to their fourth root. The pulse-
width can be lowered by decreasing the external losses and by
decreasing the fall time of the injection current pulse. The height
of the emitted pulses is mainly determined by the amplitude of
the injection current at the time of their emission. So the emis-
sion of pulse trains, rather than single pulses, resulting from
nonzero facet reflectivities, might disappear for injection cur-
rent pulses with a fall time significantly lower than the SCLA
round-trip time, which is presently unrealistic. Other possibil-
ities to avoid the trailing pulses are the use of lasers with tilted
facets [26] or the monolithic integration of the whole cavity
[27].
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