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Networks of nonlocally coupled phase oscillators' can support
chimera states in which identical oscillators evolve into distinct
groups that exhibit coexisting synchronous and incoherent
behaviours despite homogeneous coupling?®. Similar nonlocal
coupling topologies implemented in networks of chaotic
iterated maps also yield dynamical states exhibiting coexisting
spatial domains of coherence and incoherence’®. In these
discrete-time systems, the phase is not a continuous variable,
so these states are generalized chimeras with respect to a
broader notion of incoherence. Chimeras continue to be the
subject of intense theoretical investigation, but have yet to be
realized experimentally®®-'6. Here we show that these chimeras
can be realized in experiments using a liquid-crystal spatial
light modulator to achieve optical nonlinearity in a spatially
extended iterated map system. We study the coherence-
incoherence transition that gives rise to these chimera states
through experiment, theory and simulation.

Our system is an experimental realization of a coupled-map
lattice (CML), a class of systems that has received sustained
theoretical interest for the past three decades. Although the
dynamics and statistical physics of CML systems have been
theoretically explored, very few (if any) experimental realizations
exist'” 2. In our experiments, we create CML dynamics by
using a liquid-crystal spatial light modulator (SLM) to control
the polarization properties of an optical wavefront. We may
electronically introduce any desired coupling topology including
nearest neighbour, nonlocal, small world and scale free. In this
work, we impose periodic boundary conditions for both one-
dimensional (1D) and 2D nonlocally coupled maps. Thus, we have
developed a powerful experimental technique to observe the parallel
evolution of the dynamics of arrays of coupled maps numbering up
to thousands or more depending on the goals of the experiment.

Figure 1 shows the experimental set-up of the optical CML.
Polarization optics create a nonlinear relationship between the spa-
tially dependent phase shift applied by the SLM and the intensity of
the light falling on the camera: I(¢) = (1 — cos(¢)) /2. The operation
of the experimental apparatus is described in the Methods. Both the
SLM and the camera frames are partitioned into an M x M array of
square regions. These regions correspond to nodes in the network
of coupled maps. Time evolution of the network is achieved by
iteratively updating the phase applied by each region of the SLM in
away that depends on the intensity measured by the camera.

We present results for two different coupling schemes shown
schematically in Fig. 1b,c. In the 1D configuration, the elements in
the array are arranged as a ring with periodic boundary conditions.
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Figure 1| Experimental apparatus. a, Optical configuration. Polarization
optics create a nonlinear relationship between the spatially dependent
phase shift applied by the SLM and the intensity of the light falling on the
camera. Feedback and coupling are implemented using a computer.

b,c, Schematics of the 1D (b) and 2D (¢) coupling configurations are shown.
The site highlighted in white is updated based on the sites indicated in blue.
As the elements are coupled diffusively to their neighbours within a range R
in either one or two dimensions with periodic boundary conditions, the
coupling is identical for all oscillators.

The SLM is treated as a 1D lattice with the elements coupled in a
raster-ordered arrangement. If ¢!" is the phase of the ith element in
the ring at the nth iteration, and I(¢/) is the intensity measured
by the corresponding region in the camera, then the phase is
updated according to

j=R

where i=0,...,N — 1 in the 1D ring configuration and the index
i is periodic modulo N. Thus, each element is coupled diffusively
to all of the elements within a distance R on either side, and €
describes the strength of the coupling. The parameter a controls
the temporal dynamics of an isolated map. We choose a = 0.85
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Figure 2 | Parameter space of the 1D and 2D CML systems. a, Parameter space of the 1D configuration (N =256 elements). Blue corresponds to low

entropy and periodicity; orange corresponds to high entropy and chaos. The d

ashed line indicates the critical coupling strength ec = 0.54. There is a series

of tongues containing profiles which are periodic in time and have spatial wavenumbers K=1,K =2 and K = 3 as indicated. b, Parameter space of the 2D
configuration (128 x 128 lattice). There is a prominent K =1 tongue, and two tongues with more complex spatial patterns that are not characterized by a
wavenumber. ¢, Experimental and numerical realizations of the 1D system. In B, the incoherent region is highlighted in yellow. Labels A (coherence), B

(chimera) and C (incoherence) show positions in the parameter space of a. d,

incoherent region is highlighted.

such that the local map ¢"*' = f(¢") = 2wal (¢") is chaotic with
a Lyapunov exponent 1 22 0.58.

We also examine a 2D coupling scheme. In this configuration,
each element is coupled to its neighbours within a square region,
and the boundary conditions are periodic in both dimensions.
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Figure 2a,b characterizes the dependence of the dynamics of the
1D and the 2D systems on coupling strength and range by plotting
a measure of temporal entropy (see Methods). The colour maps
were obtained through numerical simulation of equations (1) and
(2). A period-2 profile will have an entropy of 1 bit, and a chaotic
profile will have an entropy close to 9 bits, because 512 bins were
used. We see spatial profiles that are periodic in time, as well as
profiles that are chaotic in time. There is a rich variety of both
coherent and incoherent spatial structures. The thin vertical regions
marked K =1,2,3 in Fig. 2a indicate conditions for which the
dynamical state is periodic in time and forms a spatially periodic
standing-wave pattern with a spatial wavenumber of K. Within
each of these regions, there is a transition from spatial coherence
to incoherence with decreasing coupling strength €, as predicted
in refs 7,8. Equations (1) and (2) admit a globally synchronous
solution. The hatched region in Fig. 2a,b indicates the region in

1
o

Experimental and numerical realizations of the 2D system. In E, the

parameter space for which global synchrony is stable, which is
identical between the 1D and 2D systems.

A comparison of the 1D and 2D systems reveals that these
systems show equivalent behaviour within a limited region in
parameter space. In the 2D system there is a prominent region
marked K = 1, which contains profiles that are homogeneous in
one direction. Every solution of the 1D problem corresponds to a
solution of the 2D problem that is uniform in one direction, that is,
¢ij = ¢;. Although K =2,3... profiles also exist in principle, only
the K = 1 profile is observed in simulation and experiment in the
2D system within the evolution time we consider. Simulations also
reveal two smaller regions that contain complex profiles with spatial
structures that cannot be realized in one dimension.

Figure 2¢ shows experimental and numerical realizations of
three profiles from the K =1 region. The sequence A, B, C shows
a progression from spatial coherence to spatial incoherence. All
profiles have a temporal period of 2. At a coupling radius r =R/N =
70/256 ~ 0.27 and € = 0.75 (A), the profile has a smooth spatial
variation. At r =105/256 ~0.41 and € = 0.44 (B), the profile shows
two large domains of coherent, synchronized behaviour separated
by narrow but finite regions of incoherent behaviour highlighted in
yellow. Numerical evidence indicates that the width of these regions
as a fraction of the system size remains constant as N increases,
and hence this is not a boundary effect (see Supplementary
Information). Although the entire profile is periodic in time, the

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

© 2012 Macmillan Publishers Limited. All rights reserved.



NATURE PHYSICS po: 101038/NPHYS2372 LETTERS

Rescaled index /' 3N-1

1.00

Intensity

I
)
a

X X2

Intensity

S
’1
Intensity

\
4

0 255
Index i

1.00 ¢

0.25

=4 1.00

I
N}
a

Index i

Figure 3 | Critical coupling and scaling of coherent profiles. a, Condition G for breaking of the smooth profile. The solid curve corresponds to the critical
coupling strength e = 0.54. The dashed and dotted curves refer to € =0.675 > €. and € = 0.475 < ¢, respectively. b, Snapshots of the period-2 solution
for even (¢,.0 (black)) and odd (q&,] (red)) time steps at the critical coupling strength of a. The light red and grey dots refer to the experiment. Points x7 and
X2 are discontinuity points, where the profile breaks, and ¢* marks the fixed point of the local map. Other parameters: N =256, a=0.85 and

r=288/256 ~ 0.34. c-e, Scaling of coherent intensity profiles. The measured coherent profiles with spatial periods K=1,2,3 are shown in black for
coupling radius r3 =22/256 ~ 0.09 (¢), r, =33/256 ~ 0.13 (d) and r; = 66/256 &~ 0.26 (e). The profile K =1 numerically obtained from equations (1) and
(5) and its rescaled profile are shown in red in ¢ and d,e, respectively. Other parameters: a=0.85, ¢ = 0.8 and N = 256.

dynamics of the coherent and incoherent regions are qualitatively
different in their degree of spatial coherence: within the incoherent
intervals there are numerous admissible combinations of upper and
lower states whose multiplicity scales exponentially with the system
size’. This mixture of qualitatively different behaviours is analogous
to the chimera states discussed in refs 2—4,9—11, where an array
of identical oscillators splits into two domains: one coherent and
phase locked, the other incoherent and desynchronized. Unlike the
chimeras in continuous-time phase oscillators>?, the generalized
chimeras here and in refs 7,8 have two coherent parts (with high
and low intensity, respectively) and two incoherent parts, as a result
of their mechanism of nascence from the completely coherent K =1
spatial profile. Finally, at r = 115/256 2 0.45 and € = 0.375 (C), the
profile is completely incoherent. The same scenario occurs in the
K =2 and K =3 regions and can be interpreted through a spatial
rescaling described below.

Figure 2d shows snapshots of experimental and numerical real-
izations of the 2D system in a 32 x 32 lattice, obtained with similar
parameter values to those used in Fig. 2b. All of these realizations
are periodic in time with period 2, except (E), which has a period
of 4 in the experimental realization shown. As for the 1D system,
the 2D system undergoes a coherence—incoherence transition as €
is decreased. At r =9/32=0.28 and € = 0.75, the system exhibits
a smooth profile (D). For r = 13/3220.41 and € = 0.44, there is a
chimera-like coexistence of coherence and incoherence (E). Finally,
atr=14/32~0.44 and € =0.375, the system is fully incoherent (F).

The transition from coherence to incoherence can be explained
analytically. We derive the critical coupling strength €. at which
the smooth profile breaks up giving rise to the incoherent regions
(B) of Fig.2c. Considering the spatially continuous version of
equation (1) and solutions with wavenumber K =1 and period-2
dynamics in time, the system dynamics are given by alternating
profiles ¢°(x) and ¢'(x) for even and odd time steps, respectively.
By evaluating the spatial derivative of this equation with the profiles
¢°(x) and ¢'(x) at the positions where the smooth profiles break
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up, we obtain two equations that, when multiplied, yield the
condition (see Supplementary Information)

1=2ma)’(1-€)*8.1 (¢°(x)) 0.1 (¢ (x)) (3)
Taking into account the local dynamics, we define the following
function as a deviation from equation (3)

G(x) = (a)*(1—€)*sin(¢"(x))sin(¢' (x)) — 1

where we can use numerically obtained profiles ¢°(x) and ¢! (x) for
given coupling parameters r and €.

The critical coupling strength €. at which coherence is broken
can be determined by applying the condition G(x) = 0 at the
crossing points x, and x, where ¢°(x) = ¢'(x) = ¢* as shown in
Fig. 3b. Applying this condition to equation (1) yields

1

=1 (ma)|sing*| @
The 1D local map f has three fixed points for a = 0.85: ¢; =0,
12 0.79 and ¢; ~ 4.13. The fixed point ¢; plays the role of a
saddle (unstable fixed point), which separates the attractor basins
of the two stable fixed points of the twice-iterated local map,
which correspond to the period-2 solution of the local map (see
Supplementary Fig. S5). Approximating ¢* by ¢; in equation (4)
we obtain €. &~ 0.55, which is close to the numerical result €. =

0.54 shown in Fig. 3a,b.

One can further obtain an approximate full analytical solution
(for a > 0.6) by Taylor expanding the local map f about m
using cos¢* ~ —1 + 1/2yr%, where ¥ = ¢* — . This yields an
equation for the fixed point 7w + ¥ ~ wa(2 — 1/2yr?), and we find
S (—1 +/1+27%2a(2a— 1))/(7m).

This gives ¥ ~ 0.96, ¢* ~ 4.10, and through equation (4)
€. = 0.54. Figure 3a shows the function G for €. = 0.54 (solid line),
€ =0.675 (dashed) and € = 0.475 (dotted). Figure 3b depicts the

© 2012 Macmillan Publishers Limited. All rights reserved.
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corresponding snapshots ¢? and ¢} for €. = 0.54. The profiles ¢?
and @] cross at ¢* ~ 4.10. The experimental results are added as
light red and grey dots in Fig. 3b.

In addition we analytically demonstrate the invariance of the
coherent profiles of different wavenumbers for equation (1) by a
scaling relation (Methods). Figure 3c—e shows the scaling of profiles
with K =1,2,3 obtained from the experimental realization with
N =256 for coupling ranges R; = 22 (Fig. 3¢), R, = 33 (Fig. 3d)
and R, = 66 (Fig. 3e) as black dots. The numerical profile from
equation (1) for K =1 and the rescaled profiles are depicted in red
in Fig. 3¢,d,e, respectively.

In summary we have constructed a versatile experimental system
to explore the spatio-temporal dynamics of arbitrary networks of
coupled maps. The nodes in the network are nonlocally and homo-
geneously coupled, and we observe the formation of coexisting spa-
tially coherent and incoherent domains as the coupling parameters
are varied. This behaviour is observed in both 1D and 2D systems.

Methods

Experimental apparatus. Figure 1 shows the experimental set-up of the optical
CML. The SLM (Boulder Nonlinear Systems P512-1550), with an active area of
7.68 x 7.68 mm? and 512 x 512 pixels, is illuminated by collimated 1,550 nm light
from a fibre-coupled superluminescent diode. The light passes through a polarizing
beam splitter and a quarter-wave plate oriented at a 45° angle to the direction of
linear polarization of the incident light, is reflected by the SLM with a relative phase
shift between the fast and slow axes, and passes again through the quarter-wave
plate and the beam splitter. We use the computer-controlled SLM to apply an
arbitrary spatially dependent phase modulation to the optical wavefront using a
birefringent liquid crystal sandwiched between an array of reflective electrodes and
a transparent cover glass. Each of the electrodes acts as an independent pixel that
can impose an arbitrary phase shift from 0 to 27 between the two polarization
components of the incoming light by applying an electric field to reorient the
liquid crystals®. The polarization optics create a nonlinear relationship between
the phase shift applied by the SLM and the intensity of light falling on the camera
(Goodrich SU320KTSW-1.7RT/RS170), with an active area of 8 x 6.4 mm? and
320 x 256 pixels. A selected square area of 256 x 256 pixels was used. The phase shift
¢i; and intensity I for a given pixel (,j) are related by

I(¢,J):%(l—cos¢w), i,j=0,...M—1 (5)
The intensity has been normalized to be between 0 and 1. A lens is used
to project an image of the SLM onto an infrared camera, which records the 2D
intensity pattern I(¢;;). We construct a network of iterated maps by using the
computer to communicate between the camera and the SLM. Both the SLM and
the camera screens are partitioned into an M x M array of square regions. These
regions correspond to nodes in the network of coupled maps. Feedback is achieved
by iteratively updating the phase applied by each region on the SLM in a way that
depends on the intensity measured by the camera.

Entropy calculation. In Fig. 2a,b, the colour of each point corresponds to a single
numerical simulation. Lattice sizes of 256 for the 1D case and 128 x 128 for the
2D case were used. Initially, the phase of each node is random and uniformly
distributed between 0 and 27. In each simulation we discard 50,000 transient
iterations. Using the next 5,000 iterations, we construct one histogram for each
of the N nodes in the network, binning the values the phase achieves in these
iterations. For each lattice site, 512 bins were used. Thus, we estimate p/, the fraction
of the time that node i will spend in the nth bin. From these statistics we obtain the
entropy, which is then averaged over the N nodes in the system

1 N=1su

H==32") pllogp}
i=0 n=0

We note that for this system the temporal behaviour of the whole network is
either chaotic or periodic, and the spatial average of the entropy will not differ
substantially from the entropy of any given node. We also note that this calculation
characterizes only the temporal behaviour of the system, and does not distinguish
between coherence and incoherence.

Scaling of coherent profiles. As a second analytic finding we demonstrate the
scaling relation for coherent profiles of different wavenumbers. Considering
the spatially continuous version of the 1D system in equation (1) (see
Supplementary Information),

x+r

B () =/ (9} (N + 1 / [F(62 ) —F (@2 0)]dy

x—r

where the coupling strength € is fixed, and f (¢) = 2w al (¢), we assume that there
exist two solutions ¢y (x) and ¢ (x) with spatial periods K’ and K, respectively.
It follows that the dynamics of ¢k (x) is identical to the dynamics of ¢ (X) at a
rescaled spatial position £ = (xK”) /K for a correspondingly rescaled coupling radius
7= (rK')/K. This demonstrates the invariance of the solutions ¢x for appropriate
rescaling of the coupling range (see Supplementary Information).
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Appendix A: Finite size of the incoherent regions in chimera states
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FIG. 4. Simulations to illustrate scaling with system size of the incoherent regions
for the 1D system. Snapshots for (a),(c),(e) N = 256, and (b),(d),(f) N = 1024. Decreasing
coupling strength is used in panels (a),(b) € = 0.44, (¢),(d) e = 0.42, (e),(f) ¢ = 0.40. Other

parameters: a = 0.85, r = 0.41. Transients of 1000 time steps were neglected. The insets show the

enlarged left incoherence region for each snapshot.

To illustrate the relationship between the finite size of the experimental lattice and the
size of the incoherent regions highlighted in yellow in Figs. 2(c),(d), we focus on the 1D
case in Fig. 2(c) panel (B). While these incoherent regions are small, they are finite and
not just a boundary between the coherent domains. The size of the incoherent region as a
fraction of the system size remains approximately constant as the system size is increased
in numerical simulations, which indicates that it is not a finite-size boundary effect. This
is shown in Fig. 4, which depicts snapshots for N = 256 and N = 1024, and a decreasing
sequence of coupling strengths ¢ = 0.44,0.42, and 0.40, with the same coupling radius
r =~ 0.41 as in panel B of Fig. 2(c). Furthermore, Fig. 4 demonstrates that the incoherence
regions become wider for decreasing coupling strength € as expected in the transition scenario

from spatial coherence to complete incoherence via chimera states (cf. [7, 8]). The initial

conditions in Fig. 4 are carefully prepared as usually employed for chimera states: We
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divided the ring of N elements into four equal parts, and used I(¢{ = 4.5) ~ 0.6 and
11

i 1 35
I(¢) = 2.5) =~ 0.9 on the segments N € [—g,g] and N € [g,g}, respectively, and
random sequences of these two values for the other two parts, which contain the incoherent
domains as subsets [7, 8]. The experimental measurements presented in Fig. 2 were made
with random initial conditions. The role of initial conditions in the emergence of chimera

states and the existence of multistability needs to be explored in the future.

Appendix B: Critical coupling strength

Starting from the system equation (1)

R
o =P+ 5 3 1 (65) — £ @] (B1)
where we define the local map as f(¢) = 2wal(¢), we obtain its spatially continuous version
for N — oo and r = R/N:
¢"H(x) =f (¢"(2))
v [ - s (B2)
Let us consider a solution with wave number K = 1 and period-2 dynamics in time. Hence

we can reduce the dynamics by even and odd time steps ¢°(x) and ¢'(z), respectively:

xr+r

§i@) = (1= Of (V@) + 5 [ () dy (B3)
with j = 0, 1. Taking the spatial derivative yields

0,¢' 7 (2) =(1 — )0, f (¢ (2)) 0w’ () +

(S @+n) = F (@ @—)]. (B4)

+27“

At the points where the smooth profile breaks up, the spatial derivative 9,¢’(x) becomes
infinite. Considering that 9,¢°(z), 9,0 (z) diverge to infinity, we can neglect the coupling
term on the right-hand side. Multiplying the equations for even and odd time steps we

obtain:

0,0°(2)0:0" () = [(1 — €)?0,f (¢°(x)) Buf (¢ (z))]
x 0,¢0°(2)0,0" (), (B5)
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which yields the following condition

1=(1=€)0uf (¢"(2)) 0uf (¢'(2)) - (B6)

As the local dynamics is governed by the map f(¢) = ma(l — cos¢) and its derivative is

equal to f'(¢) = masin ¢, we introduce the function

G(z) = (ra)*(1 — €)”sin(¢"(v)) sin(¢' (z)) — 1 (B7)

as a deviation from the previous condition (B6).

For fixed coupling radius r and fixed ¢ we can numerically calculate ¢°(x), ¢*(z). For the

critical coupling strength €. the condition G(z*) = 0 holds at discontinuity points x*.

27
f2
f
0
* * # 21
o o 0!

FIG. 5. Local map f(¢) = 2wal(¢) = ma(l—cos ¢) (red) and its twice iterate f2 (blue) for a = 0.85.

The filled and open circles refer to the fixed points of f and the twice iterated f2.

In order to obtain an analytic approximation for the critical coupling strength €., we
assume ¢'(z) = ¢'(r) = ¢* at the discontinuity points z*, where ¢* is a fixed point ¢* =

ma(l — cos ¢*) of the map, hence

G(z) = (ma)® (1 — e,)?sin? ¢* — 1 = 0. (B8)
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This leads to

(B9Y)

1
e=1% (a)|sin ¢*|’
where the minus sign should be chosen since the lower value of €. represents the threshold
where the smooth profile breaks up with decreasing coupling strength e, and the spatial
coherence is lost. The map f(¢) = ma(1l — cos ¢) has three fixed points ¢fy = 0, ¢7 ~ 0.79,
and ¢} ~ 4.13 for a = 0.85.

The solutions with K = 1 in space and period-2 in time shown in figure 3(b) can be
understood qualitatively as follows: part of the network is in the upper state, part is in
the lower state, and both states alternate with period 2. These two states correspond very
roughly to the two fixed points of the twice iterated map above and below the fixed point
¢3 ~ 4.13. They have bifurcated from ¢% which has become unstable in the twice iterated
map, and the discontinuity point between these is the fixed point ¢} (see figure 5). Hence,
the approximation ¢* ~ ¢% in equation (5) leads to €. ~ 0.55, which is close to the result
obtained numerically in figures 3(a) and 3(b).

One can even obtain an approximate full analytical solution (for a > 0.6) by Taylor

expanding the local map f about 7 using

cos gy ~ —1+ %wQ, (B10)
where 1) = ¢35 — . This gives an equation for the fixed point
T+ Y~ ma (2— %1&2) (B11)
and hence
U~ %(—H V1 +272a(2a — 1)). (B12)

This gives 1 = 0.96, ¢5 ~ 4.10, and €. ~ 0.54.

Appendix C: Scaling relation

To obtain the scaling relation for coherent profiles, we consider again the thermodynamic

limit N — oo and the spatially continuous version of system (1):

T+
6 a) = 16" @) + 5 [ 156" W) - (@) (1)
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where f(¢) = 2mal(¢), r = R/N is a coupling radius, and the coherent solution ¢}, i =

0,...,N — 1, of the system (1) approaches a corresponding smooth profile ¢™(z), where
€ [0, 2x].
In the following, we consider the case that the coupling strength € is fixed. Let there

exist a state ¢ (x) with spatial period K’. The dynamics of this state is governed by
T+

Oir (2) = [ (e (@ ))+§/[f(cb%(y))—f(cb”m(w))] dy, (C2)

r—r

The solution ¢ (z) will be compared with the state ¢ (z) with spatial period K. Our goal
is to show that the dynamics of ¢ (x) is identical to the dynamics of ¢ () at a rescaled
space position ¥ = (xK’)/K for a correspondingly rescaled coupling radius 7 = (rK’)/K.
For simplicity, we will consider that K’ = 1, and we assume that ¢x:(z) = ¢x(z/K). The
dynamics of the solution ¢k of equation (C2) with rescaled x — /K and rescaled coupling

radius r — 7/ K is governed by

(z+r)/K
s ()= (on (=) + % [ [rormn -7 (ok (2)]an (3
Let y = w/K, then o
it Ge) =1 (o (o)) g [ [ (o () o (o () w0

With the use of the above mentioned assumption ¢ (z/K) = ¢%. (x), we obtain
x+r

W (5) = Sk @) + 5 [ F0kw) - f@k @) dw =6 @), ()

r—T

i.e., identical dynamical evolution.

This is depicted in figure 6, which illustrates the scaling of the coherent profiles obtained
from numerical simulations of equation (1) with a = 0.85, ¢ = 0.8, and N = 256. Coherent
profiles with K = 1,23 for a coupling radius (a) r; = 66/256 ~ 0.26, (b) ry = 33/256 ~
0.13, and (c) r3 = 22/256 ~ 0.09 are shown in black. The rescaled coherent profile for K =1
in the panels (b) and (c) is shown in red.

To conclude, if in the system (C1) the coupling strength e is fixed and there exist two
solutions ¢k and ¢k with space periods K’ and K, respectively, then ¢/ (z) = ¢x (2 K'/K)

for corresponding coupling radii r and (rK’)/ K, respectively.
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0 ¥ 2N-1
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FIG. 6. Coherent profiles with space periods K = 1,2,3 according to equation (1) for coupling
radius (a) 1 = 66/256 ~ 0.26, (b) 2 = 33/256 ~ 0.13, and (c) r3 = 22/256 ~ 0.09 shown in black.
The rescaled coherent profile K =1 in panels (b),(c) is shown in red. Other parameters: a = 0.85,
€ = 0.8, and N = 256.
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