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Eigenmodes of the dynamically coupled twin-stripe semiconductor laser
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The twin- stripe semiconductor laser is analyzed theoretically through the nonlinear eigenmodes
of the spatiotemporal distribution of the output intensity. The transverse laser modes in three
spatiotemporal regimes are identified as a function of stripe separation: the regime of quasi-isolated
independently operating laser stripes leading to a continuous-wave output, the intermediate regime
with the laser displaying chaotically pulsating signals, and the strong-coupling regime with high-
frequency more regular oscillations due to a reduced number of active spatiotemporal degrees of

freedom.

PACS number(s): 42.50.Ne, 42.55.Px, 05.45.4+b

Semiconductor laser arrays are spatially distributed
nonlinear model systems which display complex spatio-
temporal dynamics. In the twin-stripe semiconductor
laser, two laser stripes, each by itself representing a
nonlinear oscillator, are combined in one single device.
Transversely overlapping evanescent optical fields and
diffusion of charge carriers — which are injected through
contact stripes on the top of the laser device (cf. Fig. 1)
— provide the physical mechanisms for the mutual in-
teraction between the two laser oscillators. The dynam-
ics of the twin-stripe laser is strongly influenced by the
transverse coupling between the two laser stripes. Fre-
quently, the highly nonlinear processes in and between
them lead to the spontaneous, i.e., self-organized, for-
mation of regular or turbulent structures in the output
signal [1]. Arrays of coupled lasers and the resulting
chaotic dynamics have been modeled by discrete coupled
nonlinear oscillators [2,3], involving ordinary differential
equations. The spatial average of the output signal can
often be adequately described by such coupled mode ap-
proaches [4]. However, the full spatiotemporal dynamics
and its dependence upon the stripe geometry can only
be understood in terms of continuous-space models, i.e.,
partial differential equations as used in this work. The
spatiotemporal patterns found in our numerical simula-
tions of the output intensity are strikingly complex and
the underlying dynamics is hard to grasp by visual in-
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FIG. 1. Schematic structure of a combined gain- and index-
guided GaAs/Al.Ga;_.As twin-stripe laser.
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spection. Our main issue is to demonstrate a system-
atic procedure to extract the generic eigenmodes, rather
than approximate the spatial dimension in the spatio-
temporal intensity distribution of the laser by projection
onto a “guessed” set of transverse optical modes (e.g.,
Gauss-Hermite modes). By calculating the set of these
particular eigenmodes we identify the relevant nonlinear
spatial patterns and their temporal evolution, e.g., the
broken spatial symmetry and the temporal and spatial
variation of the coupling between the two laser stripes.
With the laser as a model system, we demonstrate the
usefulness of this eigenmode analysis for the characteriza-
tion of spatiotemporal complexity in a much wider class
of spatially distributed nonlinear systems.

The dynamics of the longitudinally (in z direction, cf.
Fig. 1) slowly varying counterpropagating optical fields
E* and the dynamics of the electron-hole density N are
described by the following model system of coupled non-
linear partial differential equations [5,6]
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The optical gain and the change of the refractive index of
the active medium are modeled by g(N) = a(N —Np) and
d0n = —aaN/ko, respectively [7], where the differential
gainisa = 1.5x 1071 cm?2, Ny = 0.64 x 10'® cm~3 is the
carrier density at transparency, n; = 3.59 is the refrac-
tive index of the active semiconductor layer, ko = 27/
is the wave number in vacuum, A = 815 nm the op-
tical wavelength, ¢ the speed of light, and e¢ is the
vacuum permittivity. The linewidth enhancement fac-
tor @ = 2 is assumed constant. The nonradiative de-
cay of the electron-hole density is represented by the
relaxation time 7 = 5 ns. The diffraction coefficient
D, = (2n1ko) ™" = 18 x 10~® m results from the parax-
ial ray approximation [8] which has been performed to
obtain (1) from Maxwell’s equations [5]. The trans-
verse passive waveguiding properties are characterized by
k(x) = ko (nc — neg) for z; — w/2 < z < z; + w/2 and
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k(x) = kon. in the regions between the stripes, where
x;, ¢ = 1,2 is the center of the ith laser, w = 5 um its
width, n.g = 3.42 its effective index, and n, = 3.35 is
the refractive index of the cladding layer. The confine-
ment factor I'(z) = 0.5149 for z; — w/2 <z < z; + w/2
and I'(z) = 0.5013 between the laser stripes, represents
the transverse dependence of the vertical confinement
of the optical field to the active layer. The reflection
of the optical fields at the facet mirrors at z = 0 and
z = L = 250 pum of the laser structure is described
by the longitudinal boundary conditions Et(z,0,t) =
—VR,E~(z,0,t),E~(z,L,t) = —/R;E*(z,L,t), with
R, = 0.32 and R; = 0.99. The transverse bound-
ary conditions dE*/8z = —a,E*,0N/8z = —a, N at
z = +W/2 and 8E*/8z = 4, E*,0N/0z = +agN,
at z = —W/2, where W = s + 2w + 2w,, with s
being the stripe separation, account for the absorption
(aty = 30 cm™!) in the “wings” (w. = 10 pm) out-
side the laser stripes, and the charge carrier recombina-
tion effects at the surface of the structure. The surface-
recombination coefficient [9] a5 = ve /Dy includes the
diffusion-coefficient Dy = 30 cm?/s and the surface-
recombination velocity vs, = 10® m/s. The coupled sys-
tem of nonlinear partial differential equations (1) and (2)
is discretized in time (t) and space (z,z) and the result-
ing finite-difference equations are integrated using the
Hopscotch method [6,10]. We have varied the interele-
ment distance s between the two laser stripes, being the
prominent coupling parameter between the two nonlin-
ear laser oscillators, in the regime between 5 ym and 16
pm, while all further parameters remain unchanged. The
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transversely dependent excitation of the two oscillators
— determined by the injection of charge carriers through
the two contact stripes (hatched in Fig. 1) at the top of
the device — is applied at ¢ = 0 with a step function and
held constant in time. It is represented by the pump-
ing term A(x) = jn/(ed) for z; —w/2 < z < z; + w/2
and A(z) = 0 otherwise. The injection current density is
denoted by j, n = 0.5 represents the injection efficiency,
e is the electron charge and d = 0.15 pm the (vertical)
thickness of the layer.

Figures 2 (a) — 4 (a) show the dynamics of the out-
put intensity at the front facet I(z,t) = T1 | E~ (z,2z =
0,t) |2 /Z, Z = ny/(eoc) and Ty = 1 — R; being the op-
tical wave resistance in the semiconductor medium and
the transmittivity of the front mirror, respectively, dur-
ing the time interval from ¢; = 20 ns to {2 = 25 ns after
the start of the laser. Three different dynamic regimes
can be distinguished when the interelement coupling is
varied from the weakly coupled case at a stripe separation
s > 14 pm (Fig. 2), via the range of intermediate coupling
(Fig. 3) to the strongly coupled case (Fig. 4) at s = 5 pm.
In Fig. 2 (a) the two laser stripes operate independently
in a stable continuous-wave (cw) mode. If s is decreased
below s = 14 um, a sharp, symmetry-breaking transi-
tion occurs to a time-dependent state where both laser
stripes pulsate erratically [Fig. 3 (a)], showing appar-
ently chaotic intensity spikes which are strikingly similar
to previously reported streak-camera measurements [11].
Finally, at a stripe separation of s = 5 um [Fig. 4 (a)],
the intensity shows high frequency more regular out-of-
phase oscillations of the two laser stripes. This behavior

MW/em?]
S
N
&

A 0.265
o

(b)

(©)

-0.4

@

20 0 20 -20
x [pm]

X [um]

0 20 20 25
t [ns]

FIG. 2. Computed near-field intensity I(z,t) for the weakly coupled twin-stripe semiconductor laser at a stripe separation of
s = 14 ym. (a) Original spatiotemporal intensity distribution (Bright colors represent high light intensity, dark shading indicates
low intensity values); temporally averaged intensity (I):; transverse spatial average (I).. (b) Reconstructed spatiotemporal
intensity distribution, eigenvector pM, and expansion coefficient aV, obtained by projection onto the fundamental eigenmode
(A1) = 0.9983). (c) Projection onto the second eigenmode (A® < 107®). The analysis is done for M = 51. Only in the
reconstructed intensity distribution of the first mode (I); has been added.
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has been corroborated by computing much longer time
series and different stripe separations. In order to identify
the complex nonlinear interactions of the different spatio-
temporal degrees of freedom and gain insight into the
physical coupling mechanisms, we apply a singular spec-
trum analysis or Karhunen-Loéve decomposition [12-14]
to our computed data in the time interval T = t3 —t;. To
this purpose we calculate the spatial covariance matrix
of the transversely discretized intensity distribution

Cr = (u(zk, t)u(, t))e, (3)

where k,l = 1,2,...,M number the discrete trans-

verse points zj and (): denotes the temporal average
f:l’ dt/T. Here we have introduced the intensity fluc-

tuation u(z,t) = 8I(z,t)/+/{(I(z,t)): with 6I(z,t) =
I(z,t) — (I(z,t)) normalized such that u? has the di-
mension of an optical intensity. The eigenvectors p of
Ci; then represent an optimal basis for expansion of
I(z,t) in the sense that they maximize the projected
mean ((p,u)%):, where (p,u) = 3, P(zx)u(zx,t) de-
notes the scalar product; i.e., for a given accuracy the
minimum number of eigenvectors is needed in the ex-
pansion. By construction, Ci,; is symmetric and its
eigenvalues A(®) (a = 1,...,M, ordered according to
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FIG. 3. Intermediate coupling regime (s = 12 um). (a) Original, (b) — (f) reconstructed spatiotemporal intensity distribution,
obtained by projection onto the fundamental mode (AY) = 0.5822) (b), the symmetry-breaking mode (A® = 0.4001) (c), the
coupling mode (A® = 1.412 x 1072) (d), and the bimodal (A*) = 2.935 x 102) (e) and trimodal modes (A® = 1.58 x 10~%) (f).
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decreasing values) determine the probability of the oc-
currence of the corresponding eigenvectors p“ in the in-
tensity field u(z,t). In the following, the eigenvalues
are normalized by E = ((u,u)); = Zﬁil A, The M
eigenvectors p{®)(z;) form a complete orthonormal set
Sk p{® (z3) p®) (zx) = 6P and are used as basis func-
tions for an expansion of the original intensity distribu-
tion

I(zx,t) = (I(zx,1))e + Y o' (t) P (), (4)

with the expansion coeflicients a(®)(t)
= Y. P@(zx) 6I(xk,t). In the weakly coupled case
at s = 14 pm where the twin-stripe laser shows a
continuous-wave output signal [Fig. 2 (a)], the projec-

tion (I(zk,t)): + aM(t)p(M)(zx) of the intensity onto
the first eigenvector p(!) [Fig. 2 (b)] very closely re-
sembles the original intensity picture [Fig. 2 (a)]. Note
the striking similarities between the time-averaged signal

(I)¢ = :1’ I(z,t)dt/T and the first eigenvector p(!), as

well as between a(!)(t) and (I), = fvv(liz I(z,t)dz/W.

Not surprisingly, the first eigenvalue A(Y) = 0.9983 is
dominant. The following A(®) of order a > 2 are rapidly
decreasing. The corresponding eigenmodes p(® and co-
efficients a(*)(t) appear noisy and jagged [Fig. 2 (c)]. At
the stripe separation s = 12 um, however, there is a clear
difference between the original spatiotemporal intensity
distribution [Fig. 3(a)] and the projection of the inten-
sity field onto the first eigenmode p(*) [Fig. 3(b)]. While
in Fig. 3 (a) the intensity displays the onset of chaotic
oscillations where the phase coherence between the left
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FIG. 4. Same as Fig. 3, but for the strong-coupling regime (s = 5 pm).
A® =67 %107, (e) AW =1.19 x 1078, (f) A® =227 x 107".
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(b) A = 0.8534, (c) A® = 0.1459, (d)
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stripe and the right one is lost, the intensity projection
in Fig. 3 (b) shows the two laser stripes oscillating syn-
chronously. The fundamental mode describes synchro-
nized pulsations which may still be chaotic [2]. Only
the next contribution, the projection a(® (t)p(* (z4), pro-
vides the asymmetry which is seen in the original. The
transverse shape of p(?) shows that the laser stripe on
the right side has its maximum just at the time when the
left one assumes its smallest intensity values, and vice
versa. The second eigenvector p(®) thus describes the
broken symmetry between the two laser stripes. Gen-
erally, the magnitude of A(® = ( (p("),u)z)t is an in-
dication for the content of p(® in the spatiotemporal
pattern analyzed. Consequently, as one would expect
from simple comparison of the corresponding Figs. 3 (b)
and 3 (a), A(® = 0.4001 shows that the second eigen-
mode significantly contributes to the original [Fig. 3 (a)].
The projection of the spatiotemporal data onto the cou-
pling mode p® [Fig. 3 (d)], where the intensity dis-
tribution between the two stripes is enhanced, visualizes
the otherwise concealed irregular intensity flares which
couple the two stripes with each other. Changing in
space and time, these intensity tongues, which charac-
terize the exchange of energy between the two stripes,
indicate that the interelement coupling mechanism itself
is not constant. It changes both in space and in time.
The transverse shape of p® and p(®) and the projected
intensity distributions indicate that each laser stripe can
dynamically support — next to the single cw transverse
mode — to a certain degree two or even three transverse
modes (bimodal mode, trimodal mode). In the case of
the strongly coupled twin-stripe laser (Fig. 4), the syn-
chronizing fundamental mode p(*), which now also con-
tributes significantly to the intensity coupling between
the laser stripes, and the symmetry-breaking mode p(?)
are the most dominant in the spatiotemporal intensity
distribution. High-frequency out-of-phase oscillation of
the two laser stripes is confirmed: Clearly p(® is vital
to describe the phase lag between the laser stripes which
causes the typical oscillations observed in the original
[Fig. 4 (a)]. The bimodal mode [Fig. 4 (d)] and the cou-
pling mode [Fig. 4 (e)] also contribute slightly, while the

higher modes [Fig. 4 (f)] represent negligible noise. If an
accuracy of 107* in 3" @) is required, only the first
three modes are necessary, as compared to five modes
in Fig. 3. Thus the number of active eigenmodes, i.e.,
spatiotemporal degrees of freedom, is reduced as com-
pared to the intermediate-coupling regime (Fig. 3). This
reflects the stronger spatial coherence and explains the
more regular dynamics in the case of s =5 pm.

With the paradigm of the twin-stripe semiconductor
laser it has thus been demonstrated that the singular
spectrum analysis is a powerful tool for the investiga-
tion of spatially distributed nonlinear dynamic systems.
Experiments on commercially available ten-stripe lasers
[15] show qualitatively similar behavior. The symmetry
breaking mode, the coupling mode, and the bimodal mode
are clearly identified next to the synchronizing funda-
mental mode. These modes, although generally not no-
ticeably in common shadow plots due to the affluence of
information from the spatiotemporal intensity distribu-
tions, do significantly determine the dynamics of the cou-
pled laser oscillators. In particular, the interelement cou-
pling between the two oscillators itself changes in space
and time. Consequently, assuming a spatially and tem-
porally constant coupling parameter for describing the
evanescent coupling between the two laser oscillators [2],
will not adequately cover all the relevant spatiotemporal
dynamics. To demonstrate the wider applicability of our
approach, we have applied our method to the investiga-
tion of electrical instabilities and current filamentation
in semiconductor transport [16] and found similar funda-
mental eigenmodes [17]. Moreover, we propose that our
approach also applies to the interpretation of spatiotem-
poral patterns in nonlinear optics of liquid crystals [18].
Thus a deeper understanding may be gained of the pro-
cesses which involve the combination of spatial and tem-
poral degrees of freedom, in the laminar regime as well
as in the regime of spatiotemporal complexity and chaos.
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FIG. 1. Schematic structure of a combined gain- and index-
guided GaAs/Al.Gai_.As twin-stripe laser.
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FIG. 2. Computed near-field intensity I(z,t) for the weakly coupled twin-stripe semiconductor laser at a stripe separation of
s = 14 pm. (a) Original spatiotemporal intensity distribution (Bright colors represent high light intensity, dark shading indicates
low intensity values); temporally averaged intensity (I),; transverse spatial average (I).. (b) Reconstructed spatiotemporal
intensity distribution, eigenvector p'?, and expansion coefficient a(l), obtained by projection onto the fundamental eigenmode
(A = 0.9983). (c) Projection onto the second eigenmode (A®> < 107%). The analysis is done for M = 51. Only in the
reconstructed intensity distribution of the first mode (I): has been added.
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FIG. 3. Intermediate coupling regime (s = 12 pm). (a) Original, (b) — (f) reconstructed spatiotemporal intensity distribution,
obtained by projection onto the fundamental mode (/\(1) = 0.5822) (b), the symmetry-breaking mode (A2} = 0.4001) (c), the
coupling mode (A® = 1.412 x 1072) (d), and the bimodal (A'*) = 2.935 x 102) (e) and trimodal modes (A'®) = 1.58 x 10™%) (f).
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FIG. 4. Same as Fig. 3, but for the strong-coupling regime (s = 5 pm). (b) A) = 0.8534, (c) A® = 0.1459, (d)
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