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Quantum-Dot Lasers—Desynchronized Nonlinear
Dynamics of Electrons and Holes

Kathy Liidge and Eckehard Scholl

Abstract—We analyze the complex turn-on behavior of semi-
conductor quantum-dot (QD) lasers in terms of a nonlinear rate
equation model for the electron and hole densities in the QDs and
the wetting layer, and the photons. A basic ingredient of the model
is the nonlinearity of the microscopic carrier—carrier scattering
rates. With the framework of detailed balance, we analytically
relate the microscopic in- and out-scattering rates. We gain insight
into the anomalous nonlinear dynamics of QD lasers by a detailed
analysis of various sections of the 5-D phase space, accounting
for density-dependent carrier scattering times. We show that
the strongly damped relaxation oscillations are characterized by
a desynchronization of electron and hole dynamics in the dots.
Analytic approximations for the steady-state characteristics are
also derived.

Index Terms—Nonlinear relaxation oscillations

quantum-dot (QD) lasers, turn-on dynamics.

(ROs),

1. INTRODUCTION

UANTUM-DOT (QD) injection lasers, which are singled
Q out by low threshold current, low bit error rate, and large

temperature stability, are an important optoelectronic ap-
plication of self-organized semiconductor QD structures [1],
[2]. In previous works [3]-[5], it was shown that the nonlinear
dynamic response of QD lasers can be quantitatively understood
by including the strongly nonlinear character of electron—elec-
tron scattering processes between the QDs and the 2-D wetting
layer (WL) [6] into a rate equation model. Due to an error in the
sign of the QD energies in the numerical code, the scattering
rates in [3]-[5] were erroneously based on an energy scheme
where the QD levels are in resonance with the WL, which is
not the normal configuration. In this paper, we present correct
scattering rates, and furthermore, discuss in detail the resulting
gain switching dynamics of the laser. While the internal kinetics
of QD and WL electrons and holes depend sensitively upon the
scattering rates, the turn-on dynamics of the optical output is es-
sentially the same as in [3]-[5].

Compared to other rate equation models that include scat-
tering rates that are linear in the WL density and equal for
electrons and holes [7]-[12], we emphasize the importance
of different nonlinear rates for both types of carriers for the
internal laser dynamics. Following a dynamic hierarchy, our
model bridges the gap between a fully microscopic description,
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including polarization and population dynamics [13]-[15],
and rate equations with constant coefficients. In [11] and [16],
different scattering times are included for electrons and holes,
and the resulting asymmetry is discussed, but their scattering
times are constant parameters. Following the argument of
mass action kinetics in nondegenerate semiconductors, Auger
processes depend quadratically on the WL densities [17], [18],
as assumed in [19] to discuss the effect of optical feedback
and in [20] to interpret experimental results. However, we
show that depending on the carrier densities in the WL, the
scattering rates show a more complex dependence that is dif-
ferent for electrons and holes. We also derive a detailed balance
formula connecting the nonequilibrium in- and out-scattering
rates via a WL-carrier-density-dependent factor. The effect
of inhomogeneous broadening, as discussed in [7], [21], and
[22], which was shown to be important in order to discuss the
linewidth-enhancement factor [9] or mode-locking effects [23],
is taken into account in a simplified approach that distinguishes
only between the total QD density and the density of the lasing
subgroup of QDs whose size matches with the laser mode.

We can relate the experimentally found low cutoff frequency
and the strong damping of relaxation oscillations (ROs) of these
lasers to the microscopic scattering processes. It is the purpose
of this paper to provide insight into the dynamics by developing
analytic approximations based upon a microscopic model. The
quasi-steady state reached during turn-on permits us to simplify
parts of the nonlinear scattering rates and allows for insights into
the physical processes.

This paper is organized as follows. In Section II, we present
the rate equation model and discuss basic properties of the non-
linear scattering rates used for the simulations. Subsequently, in
Section III, we analyze the laser turn-on dynamics and the dif-
ferences in the dynamics of electrons and holes. In Section IV,
analytic results for the steady-state behavior of the laser will be
presented, before we conclude in Section V.

II. QD LASER MODEL

The analytic and numeric investigations of the laser turn-on
dynamics presented here are based on the model given in [5].
Howeyver, there are differences in the model discussed here that
concern the parameter values, the incorporation of inhomoge-
neous broadening, and a different energy scheme of the device.
In the QD laser system, the electrons are first injected into a WL
before they are captured by the QDs. We consider a two-level
system for electrons and holes in the QDs with an energy sep-
aration of hAw = 0.96 eV as common for self-organized QDs
in the InAs/InGaAs material system. The following nonlinear
rate equations [see (1)—(5)] for the charge carrier densities in
the QDs, n. and ny, the carrier densities in the WL, w, and wy,
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(e and h stand for electrons and holes, respectively), and the
photon density n,,;, determine the dynamics:

1 )
Ne = ——MNe + S;HNQD - Rind(n57 Toh, nph) - Rsp(n67 nh)
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The induced processes of absorption and emission are mod-
eled by a linear gain Rina(ne,nn, npn) = WAMNe + np —
N QD)nph, where NQP denotes twice the QD density of the
lasing subgroup (the factor of 2 accounts for spin degeneracy),
W = (|ul*\/Zvg)/(3meoh)(w/c)? is the Einstein coefficient,
and A is the WL normalization area. The density N*"™ is twice
the total QD density as given by experimental surface imaging.
The spontaneous emission in the QDs is approximated by
Ryp(ne,np) = (W/N®)n.ny,. The WL spontaneous recom-
bination rate is expressed by Rgp(we, wr) = BSw.w;,, where
BS? is the band-band recombination coefficient in the WL. 3 is
the spontaneous emission coefficientand I' = T, NP /Nsum jg
the optical confinement factor. I" is the product of the geometric
confinement factor I'y (i.e., the ratio of the volume of all QDs
and the mode volume) and the ratio NQP /Ns"™ (accounting
for reduced gain because, due to the size distribution of the
QDs, only a subgroup of all QDs match the mode energy for
lasing). The coefficient 2+ expresses the total cavity loss. The
variable j is the injection current density, e, is the elementary
charge, and 7 = 1 — w./N W is the injection efficiency that
accounts for the fact that we cannot inject any more carriers if
the WL is already filled (w. = NW). The spectral properties
of the laser output are not addressed in the model, as the photon
density is an average over all longitudinal modes. Changes in
the QD size distribution are taken into account only by changes
in the active QD density, which basically changes the gain.
The values of parameters used in our simulations are listed in
Table I.

A crucial contribution to the dynamics of QD lasers is given
by the nonradiative carrier—carrier scattering rates Si* and Si®
for electron and hole capture into the QD levels, S°"* and Sp™*
for carrier escape from the QD levels, and scattering times 7. =
(Sin + §ou)=L and 75, = (Si® + Sgut)~L. The rates are de-
termined microscopically within the Boltzmann equation and
orthogonalized plane-wave approach [4]. All electron—electron,
hole-hole, and mixed electron—hole Auger processes are in-
cluded in the rates [5]. The Coulomb interaction is considered
up to the second order in the screened Coulomb potential. The
calculated scattering rates depend in a strongly nonlinear way
upon the WL carrier densities w. and wy, [4], [5]. The curves
in Fig. 1(a) and (b) show the in- and out-scattering rates for
electrons and holes, respectively. Note that the values for elec-
tron and hole in-scattering rates differ by about a factor of 2
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TABLE I
NUMERICAL PARAMETERS USED IN THE SIMULATION
UNLESS STATED OTHERWISE

symbol value symbol value
w 0.7ns~! A 4% 1073 cm?
T 300 K NCP 0.6 x 10'%¢m =2
2K 0.1ps~! NSum 20 x 1010¢cm 2
I, 0.075 NV 2% 10Bem™2
r 225x1073 BS 850ns~ ! nm?
u 0.75 eg nm B 5% 1070
Eng 14.2 me (my)  0.043(0.45)mq
AE, 190meV AE}, 69 meV

0.15 T T

(@) =—-=g"
—'84 —_— S:“' P

s 0 1 2 3 4 s
w, (10"cm”)

Fig. 1. Carrier—carrier scattering rates. (a) Dashed red and solid black lines
show electron in- and out-scattering rates S'™ and S°"*, respectively, as a func-
tion of the WL electron density w.. (b) Dashed orange and solid black lines
depict in- and out-scattering rates for holes as a function of the WL hole density
wy,. The ratio g. = wy /we. is fixed to 1.5.

and the out-scattering rates differ by two orders of magnitude.
For very low WL carrier densities, the in-scattering rate shows
a quadratic increase as predicted by mass action kinetics, but
it deviates from this functional relation for increasing WL car-
rier densities. The out-scattering is characterized by a sharp in-
crease with increasing density of scattering partners followed
by a decrease that is caused by Pauli blocking of the WL states.
Since the holes have a larger effective mass, the maximum of the
out-scattering rate lies at higher WL carrier densities than for
electrons and is outside the range shown in Fig. 1(b). Due to the
mixed electron-hole scattering processes, the rates depend on
both w, and wy,, which would require a plot of S;%OM (we, wp)
for complete information. In Fig. 1, we fixed the ratio g. =
wp/we to g = 1.5 in order to visualize the rates. However,
for the numeric simulations of the laser dynamics, the full de-
pendence of the scattering rates on both w, and wy, as dynamic
variables is taken into account, which is an improvement over
the simulations with constant ratio g. in [4] and [5].

The microscopic scattering rates also determine escape, cap-
ture, and scattering times for the microscopic QD system. We
define 7, " = 1/Si" and 77%¢ = 1/S5™* (b = e, h). The values
for the scattering times 7, and 7, resulting from our microscopic
calculations are depicted as dashed red and solid black lines, re-
spectively, in Fig. 2(a). They show a decrease with the carrier

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on November 5, 2009 at 07:32 from IEEE Xplore. Restrictions apply.



1398

200

scattering time(ps)
scattering time (ps)

12 -2,
W (10 "em’)

Fig. 2. Scattering times. (a) Dashed red and solid black lines show micro-
scopically calculated electron and hole scattering times 7. and 75 of the con-
fined QD level as a function of the WL electron density w.. Gray symbols:
755" (ws) (b = €, h). (b) Dashed blue and dotted gray lines show capture and
escape times 7, and 7:°°, respectively, for holes as a function of wj, . Black
solid line: 7. g. = wy, /w, is given by (30).

density in the WL. Fig. 2(b) depicts escape, capture, and scat-
tering times for holes plotted as dotted, dashed, and solid lines.
For the electrons, only 7. is plotted because, due to the small
escape rate of the electrons, there is only a marginal difference
between 7, and 75?P. Several publications dealing with QD laser
modeling, e.g., [10] and [11], include a linear dependence upon
the WL carrier density w, such as S = w/(7°** NWL) and
Seut = (NWE — ) /(75 NWL), Compared to our approach,
this is a rough approximation. The following functions provide
the best fit for the scattering times plotted in Fig. 2. Here, note
that the ratio g. = wy, /w, is given by the steady-state relation
derived in (30)

1.5 ps - nm ™2
cap — 6 6
T T 538 amEwl v ws P ©
0.24 ps - nm~2
esc — 86 7
TS 100 mmZ wl +awn 0P @
0.29 ps - nm 2
= 41’;““1 —3.6ps 8)
5.2 . -2
TSP T, = 2.5 I + 27 ps. )

w, + 1570 nm? w?

It can be seen that for the hole scattering time, the dependence
on wy, is close to what would be expected with the assumption
of a linear scattering rate. In contrast to this, we find a more
complicated functional relation for the electron scattering rate.
It has to be noted that for even higher WL carrier densities, both
electron and hole scattering times will finally increase due to
Pauli blocking of the scattered Auger electron.

The products 7.5 (w.) and 75, Si"(wy,) are also plotted in
Fig. 2(a), and are indicated by gray circles and triangles, re-
spectively. Compared to the complex nonlinear dependencies of
the scattering rates, these relatively simple functions for 7,S:"
and 73, Si% are very useful for further analysis of the rate equa-
tion system (see next section). In the following, we will derive
these functions using the principle of detailed balance. In ther-
modynamic equilibrium, there is a detailed balance between
the in- and out-scattering rates of the QD level. This allows
to relate the rate coefficients of in- and out-scattering even for
nonequilibrium carrier densities [17]. For a discrete two-level
system with energy difference A F, the escape and capture times
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7%%¢ and 7P, i.e., the inverse rate coefficients of the single
electron escape and capture processes, are related by 7°°¢ =
7P exp(AE/(kT)) [18]. However, for the Auger scattering
between the degenerate 2-D electron gas of the WL and the dis-
crete QD level, the ratio (Si®/Sg"t) also depends on the WL
quasi-Fermi level F,VE for b = e and b = h.

Assuming quasi-equilibrium within the WL states but
nonequilibrium between the WL electrons, and the QD
electrons, the WL holes, and the QD holes, the occupation
probability of electrons in the WL states £}, can be expressed
by quasi-Fermi distributions

E _FWL -1
fk = [exp(kT> + 1:| 5 b =€, h

The total electron and hole densities in the respective WL are
given by

(10)

00
we = pe / By fi
EWL

FVVL _ EVVL
= pkTIn|1 e e 11
p n{ + exp < T >} (11
E)VVL
WhH = Ph / dEk(l — fk)
EWL _ pWL
= p;Llen[l—l—exp(hkiTh)} (12)

with the 2-D density of states p, = my/(7h?), where my, are
the effective masses of electrons (b = e) and holes (b = h),
respectively, and E\V" are the WL band edges of conduction
and valance bands, respectively. Equations (11) and (12) can be
inverted to express the quasi-Fermi levels F'V* and F,YVL asa
function of the nonequilibrium WL carrier densities w, and wy,

[24]:
We
,k:T) - 1} (13)

FVY(wp) = E)YY — kT In | exp -1]. (14
kT
The microscopic Auger in- and out-scattering rates are given

by
SE =" Wil fefr(1— fm)

klmb’

>

klmb’

FVY(w.) = EVY + kTIn {exp(

(k— QD,l — m)

Sout

I?lli;czb’ L= fi)A=fi)fm (QD — k,m — 1)

where the transition probabilities W,i?r/n (;:,n contain the Coulomb
matrix elements and the energy-conserving §-function [5]. For
a single electron—electron scattering process, the in-scattering

rate can be rewritten as follows:

klmefkfl(l - fm)

1—fm
= klrne( fk)( fl)fml_fkfklflfl f"‘lf
Fime (1= f1) (L = f1) fm
Fe. —Fy—E+E,
X eXp< kT )

where the microscopic reversibility of the Coulomb matrix
elements and the quasi-Fermi distribution given in (10), i.e.,
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Fig. 3. Detailed balance. (a) Dashed red and solid black lines show
kT In(Sin/Sput) for electrons (b = ¢) and holes (b = h), respectively,
according to the calculated scattering rates (Fig. 1) versus w,. (b) Sketch of
the energy diagram of the QD and WL system. The plot of FV*(w,) — EQP
and ERP — FW“(w,) coincides exactly with the lines shown in (a).
EWL _ EQP = AE, = 190 meV; EX° — EWV' = AE, = 69 meV,;
hv = 0.96 eV.

/(1 = fi) = exp[(F2VY" — Ex)/(kT)], have been used.
Inserting the energy conservation of final and initial states,
E, — E — E;, + E?D = 0, where E’SD is the confined QD
electron energy, and summing over all initial and final states
give

WL _ QD
¥> (15)

Sinzsout e

Note that (15) also holds for the mixed e—# Auger process, and
an analogous relation holds for hole in- and out-scattering rates:

o _ g [ E
Sln — SOU v 16
h ho €Xp T (16)
In Fig.3, the numerically calculated values of kT

In [Sin(wy)/Sg™ (wy)] are plotted versus wy, for electrons
and holes. They coincide exactly with FVE(w,.) — EQP and
ESD — FWVY(wy,) taken from (13) and (14), as predicted
from the detailed balance relations from (15) and (16). For
WL densities higher than p kT (p.kT = 0.47 x 102
cm~? and ppkT = 4.8 x 10'2 cm~2), the quasi-Fermi levels
FVE given by (13) and (14) depend approximately linearly on
wy, through FYY = EWVE 4+ 4w, / py,. Thus, for wy, > pykT, the
curves in Fig. 3 are straight lines with a slope of 1/py.
Using (15), we can rewrite

. [ Qout -1
s = | +1]
r EQD — FWL(y,) -1
= - - - 1 17
() o] o
_ e_AiEF/(kT) 1 - 18
= |l =g (18)
Analogously,
-1
) FWL _ EQP
S (wy) = |exp| 2 (w}:% h +1 (19)
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Fig. 4. (a) Comparison of experimental (taken from [5]) and simulated turn-on
transients for j = 2.2, and § = 2.7, . (b)—(d) Comparison between experi-
mental (black stars) [5] and simulated data (blue dots) plotted versus increasing
pump current j / jn . (b) Frequency of ROs, fro . (¢) Width of the first RO peak,
Atpwawm - (d) Turn-on delay time, Tqe1ay . Parameters as in Table I. Gray squares
in (b)—(d) show simulated results for different I'; = 0.41.

o—AEL/(KT) -1

e’l”h/(Ph kT) _ 1 (20)

In the literature, escape rates are often derived by assuming
thermal equilibrium for the QD laser system [7], [25], where
the WL is treated as a single discrete level with degeneracy g =
pekT /N QD However, this holds for the situation only where
the Fermi level of the WL is equal to its band edge.

III. ELECTRON AND HOLE DYNAMICS

Using the microscopic scattering rates as described in the
previous section, we were able to simulate the gain switching
dynamics of the QD laser. Moreover, we were able to quan-
titatively reproduce experimental results. Fig. 4(a) shows a
comparison between experimental (red stars taken from [5])
[5] and simulated turn-on transients underlining the excellent
agreement. Even for a wide range of different pump currents
J/Jjtn, the key parameters, namely the frequency of ROs, fro,
the width of the first RO peak, Atpwmn, and the turn-on delay
time, Tgelay, correspond nicely to the experimental data points,
as can be seen in Fig. 4(b)—(d).

Since our model allows for a separate treatment of electron
and hole dynamics, we will investigate the transient behavior
of both. As can be seen in the phase portrait of Fig. 5(d), the
turn-on process projected onto the (ny,, n. )-plane deviates from
a straight line (which corresponds to the synchronized behavior
n. ~ nyp) and instead performs a spiral ending in the fixed
point (steady state). This desynchronization between electron
and hole dynamics is due to different effective masses and the re-
sulting different energy separation between WL band edge and
confined QD level [AFE, = 190 meV and AE};, = 69 meV, re-
spectively, as depicted in Fig. 3(b)]. Although the in-scattering
rate of holes is much higher (see Fig. 1), their out-scattering
rate is comparably large, which results in a small scattering life-
time. Hence, the QD hole density reacts more slowly to dynamic
changes than that of the electrons, leading to a small phase shift
of both transients [see Fig. 5(b) and (c)]. Furthermore, the max-
imum value of the electron concentration during the RO has a
larger difference in the steady-state value than that of the hole
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Fig.5. Turn-on transients of (a) photon density 1, ; (b) electron density in the
QDs n.; and (c) hole density in the QDs nj, (. and n,, are normalized to the ac-
tive QD density N ?P). (d) Turn-on process projected onto the (n., n, )-plane.
t1 and fo mark the first maximum and the first minimum of the turn-on tran-
sient, respectively. 3 = 2.77¢1,. Other parameters as in Table 1.

concentration. While in the steady state, most of the QDs are
occupied by an electron, the holes are only half filled.

Fig. 6(a) and (b) shows the trajectories (blue lines) of the
turn-on process projected onto the (np,npp)-planes. The fa-
miliar anticlockwise rotation can be seen for the electron as
well as for the hole density. Nonetheless, their shape is dif-
ferent, as the dynamic range of the electrons is higher, leading
to a wider spiral. The black circles in Fig. 6(a) and (b) de-
note the steady-state values of the electron and hole concentra-
tions (n’ and nj} ) for increasing pump current. It is interesting
to note that the value of n} decreases with j. This is anoma-
lous since for conventional lasers, the carrier concentration is
clamped at the threshold value (saturation of inversion). Never-
theless, the inversion is also saturated for our system as the total
number of carriers, namely the threshold density n; = n} +nj,
is a constant that depends only on the material parameters and
not on the pump current. Therefore, the steady-state values of
the hole concentration in the QDs 7} increases with current.
Neglecting spontaneous emission, it follows from the equation
npn = 0 [see (5)]

ng=ns+nj = I‘I%I/—KA—i_NQD'

As already pointed out in [5], an increase in the confinement
parameter leads to higher oscillation frequencies, higher output
power, lower damping rate, and lower threshold currents. In
Fig. 6(c) and (d), the resulting electron and hole dynamics for
a geometric confinement factor of I'y = 0.41 can be seen. (A
higher Iy can be achieved by using more QD layers or larger
QD size.) Compared to the situation for higher I';, the dynamics
of the carriers is compressed and much more synchronized than
before. The steady-state values of the electron and hole density
[black circles in Fig. 6(c) and (d)] shift to lower values; however,
the electron density still decreases with 7. The changes in the
synchronization between electron and hole dynamics are again
visible in Fig. 7(a) and (b), which shows turn-on transients of
the electron and hole dynamics for two different I'y. As can be
seen for higher I'; [Fig. 7(b)], the phase shift disappears and the
dynamic range is comparable. The influence of the increased I,
on the photon output is depicted in Fig. 7(c), showing a drastic
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7 (0 < j <5jm). n. and ny, are normalized to the active QD density N QP
Parameters as in Table 1.
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Fig. 7. Turn-on transients for (a) I'y = 0.075 and (b) Iy = 0.41. Dashed red
and solid blue lines show electron and hole densities in the QDs, respectively.
n. and nj, normalized to the active QD density N 2" (c) Photon density during
turn-on for different confinement factors: I'y = 0.075 (solid black) and T", =
0.41 (dashed-dotted blue). 7 = 2.6, . Other parameters as in Table 1.

increase in intensity and RO frequency and a decrease in the
damping. Erneux et al. [10] also found this transition in the dy-
namics of a QD laser by changing the gain coefficient that is
comparable to changing the confinement factor in our model.
The numeric value of the RO frequency fro for increased Iy is
also plotted in Fig. 4(b), which shows the square-root increase
with the pump current at about twice the value of the frequency
for 'y = 0.075.

To clarify the observed behavior, we extract the nullclines
NC; (e = i, = fpp, = 0) given by (22) and NC; (. = 0)
given by (23) of the rate equation system (1)—(5) projected onto
the 2-D subspace (w.,n.). The intersection of the nullclines
determines the steady state. The nullclines are given by

ne(we7 wh) _ 2/@/(FWANQDT}L) + (Sén + S}?Ut)
NQD Sin 4 Gout 4 Gin 4 Gout
_ (nt/NQD)Te + (ThTe.S(izn B TST}LSIiLn) (22)
Te +Th
ne(we7wh7j) _ in Te m . S
W - TeSe - Nsum <a.] - B wﬁwh) . (23)
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Fig. 8. (a) Nullcline NC; [(22)] and NC,, [(23)] are indicated by solid black
and blue lines, respectively, in (n., we)—plane. Dotted solid and dashed blue
lines correspond to NC, for different pump currents: 7 = 2.0j¢n, 7 = 2.6j¢n,
and j = 3.6ju,. n. is normalized to the QD density NP, Parameters as in
Table 1. The trajectory of the turn-on process at j = 2.6j¢, (red) is indicated
by arrows. (b) Enlargements of (a) around the steady state. (c) Enlargement of
the same regime but for holes in ( ny,, w )-plane. Dotted circles denoted by #;
and t> mark the first maximum and the first minimum of the photon turn-on
transient, respectively.

Analogously, we find the nullclines for the hole density in the
QDs as a function of the WL hole density by using (21) and
(22), and for the first nullcline NC", which is given by (25),
and wy, = 0 for the second nullcline NC;’, given by (25)

nh(w67wh) oy ns(wevwh)
NQP T NQD  NQD 24)
nh(w€7wh7j) _ in Th 77 . S
—Nap = TS — Aeum <aj -B wewh) . (25)

The shape of the nullclines is mainly determined by the non-
linear scattering rates. Since we also consider the mixed e-h
Auger processes, the scattering rates S,‘)n/ °"* depend on both
w, and wy,. The ratio g. = wy, /w, changes significantly with
the pump current [5] so that both nullclines implicitly depend
on the current. However, in Section IV, we show that at steady
state, we can derive an expression for g.(w. ), which then elim-
inates all implicit current dependence. This has been done in
Fig. 8, where the nullclines NC; [see (22)] and NCs, [see (23)]
are depicted. NCs [see (23)] is shown for three different pump
currents (j = 2.0j¢n,J = 2.6J¢n, and j = 3.65y,) while NCy
[see (22)] does not depend on j any more. With increasing cur-
rent, the fixed point shifts downward on NC; to lower n., ex-
plaining the decrease in n} with j that was already observed in
Fig. 6(a); however, we can now quantify the slope as given in
(23). If equal electron and hole scattering times are considered,
(23) reduces to n. = n/2, thus displaying a horizontal line in
(ne,w, )-phase plane.

In addition to the nullclines, Fig. 8(a) shows the corre-
sponding trajectories of the turn-on process (red) for j = 2.6y,
(same as in Fig. 6(a) and (c) but in a different 2-D subspace).
The trajectories approach their steady-state value, which is the
intersection of the two nullclines. Because the electron density
n. cannot exceed N QP the intersection will always stay below
N 9P although a single nullcline can enter the forbidden region.
Besides the scattering times 7, and 7y, the nullcline NC; [(22)]
is given by the parameters that determine the threshold carrier
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density n; [see (21)]. Thus, their impact on the steady state
can be seen easily, e.g., an increase in I' leads to a smaller 7,
and thus, to a downshift of NC; [(22)]. As a result, reduced
steady-state value for the QD carrier densities are obtained in
accordance with the numeric values shown in Fig. 6(c)—(d).
Fig. 8(b) and (c) shows an enlargement around the fixed point
in (n.,w.)-plane and (n, w, )-plane, respectively. They show
that while the carrier density in the QDs oscillates, the WL
carrier density increases monotonically. The first slope of the
trajectory in (n., w, )-plane that builds up the population inver-
sion is mainly given by NCs [(23)], which is dominated by the
scattering time 7.. For Fig. 8(c), the nullclines NC}IL [(25)] and
NCS [(25)] have been plotted together with the trajectory in the
(nn,w,)-phase space to emphasize the hole dynamics.

For much lower scattering times, which can be obtained by
using much smaller energy separation AF, and AFE}, between
the WL and the QD levels, the nullcline NCs [(23)] is mainly
given by the product 7.5i", which has a value close to 1 for
we > pkT [see (18)]. As a result, the electrons are strongly
constrained by the limit n. < NP and forced to closely follow
the null-isocline NCs [(23)]. The holes instead would perform
large-amplitude oscillations in the phase plane. For such small
energy separation, the laser would show much higher damping
than the case discussed here.

IV. LASER CHARACTERISTICS AND STEADY-STATE BEHAVIOR

Further insight into the electron and hole dynamics can be
gained by deriving the functional dependence of the steady-state
values upon the injection current density j. The first point of in-
terest is the change of the steady-state value of the WL electron
density as a function of pump current w* (). This fixed point
wi(7) is given by the intersection of NC; [(22)] and NC5 [(23)],
yielding (26) that depends on w} and wy:

iJ - Bsgcwz2
€0
NS‘Jm . . nt
= S Syt — —) . (26
Te (w:) + Th(gcw:) (Tl e T Thoh NQD (26)

In order to solve this equation for w, we still have to de-
rive a functional dependence for g.(w?). This can be done with
the help of a conservation law embedded in the rate equation
system (1)—(5), which reads N 9P (1, —i,) = NWVE (. —np,).
Integrating this equation for the case without external doping
leads to

NQD(w;‘L —wk) = N*"(nl —n}). 27

To obtain an equation for the WL carrier densities, we sub-
stitute (23) and (25) into (27) and neglect the current-dependent
term

’U)t — ’U}: in in Te — Th . ~
TN = TS =S = S (0 = eoftap) - (28)
Nsum o . o .
gc ~ % (TESG' (’er) - ThSh (gcwe)) + 1 (29)
ge =~ 0.87 4+ 0.62 ‘ —. (30)

Since (29) depends solely on w; and g., this gives the de-
sired dependence g.(w}). Through the products 73,S;", the ratio
g. depends on the effective masses and the energy separations
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Fig. 9. Relation between WL electron and hole densities in (w., wh)-plane:
dashed-dotted gray line shows w}g. as given by (29). Blue circles show the
steady-state values resulting from numeric integration. Solid gray line denotes
w. = wy. Red line with arrow is the trajectory of the laser turn-on. (Inset)
Close-up around fixed point for j = 2.6j1,. Dotted circles denoted by ¢, and
t> mark the first maximum and the first minimum of the turn-on transient, re-
spectively. Parameters as in Table I.

AE, and AFE},. The dashed-dotted gray line in Fig. 9 depicts
wy = ge(w})w?. It can be seen that it is a good approxima-
tion compared to the actual steady-state values w} (w?) plotted
as blue circles in the (w,, wy, )-plane. Fig. 9 also shows the tra-
jectory of the turn-on process as a red line with arrow. The ex-
cursion through the phase space, where both carrier types in-
crease and finally approach their steady state, takes part during
the delay time Tgelay. The maximum photon output is reached
at the turning point of the trajectory. The inset in Fig. 9 shows
a close-up of the phase space region where it can be seen that
compared to the steady-state value, the WL carrier densities do
not change much during the ROs (circles at £; and ¢» in the
inset denote the first maximum and minimum of the turn-on
transient, respectively). Using the solution of (29) and substi-
tuting it into (26), we arrive at the steady-state solution w¥ (7).
It gives very good result compared to the numeric integration of
the full system. Fig. 10(b) shows the steady-state values w(j)
and wj; (j) as solid red and dashed black curves. They perform a
square-root-like increase with the current j. From (26), we see
that this increase is determined by the spontaneous emission in
the WL (R., = BSw.wy) as long as 1/(r. + 73,) is small,
and thus, for high scattering times as used for our modeling. We
therefore find the analytic approximation

€1y

For smaller scattering times, which can be obtained with
smaller energy separations AF, and AF},, the solution of (26)
would be dominated by the scattering rates and would thus
yield a smaller value for w}.

Using the approximations (31) for w¥(j) and (30) for g.
to yield wj (j), the steady-state values of n’(j) and nj} (j)
are given by NCs [(23)] and NCQ [(25)]. The results for the
steady-state values found by numeric integration are plotted
in Fig. 10(a), together with the analytic approximation. As
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Fig. 10. Steady states. (a) Solid red and dashed black lines show steady-state
values of electron and hole density in the QDs, n* (j) and nj, (j ), respectively, as
a function of pump current. Blue circles show n;, (7), which gives the threshold
current jy, at which lasing starts. (b) Same as (a) but for the carrier densities in
the WL, w? () and wj, (j). Parameters as in Table L.

already discussed before, using Fig. 6, the steady-state value
of the electron density n*(j) decreases with the current while
n} (j) increases.

Additionally, Fig. 10(a) and (b) also depicts the input—output
characteristic, i.e., () of the laser by blue circles. Using (5)
with # = 0, (3), and (1) in the steady state, we arrive at a laser
characteristic described by

nyy(d) = sy W(j — Jtn) (32)
where
77/-*_ S % ok WNsum * ok
o) = B wiwy, + (Napan) e (33)

It shows the linear increase with the pump current j as seen
in Fig. 10. It has to be noted that j;} is not a constant but de-
pends on j through the carrier densities in the WL and QD. The
parameter w, at threshold, and therefore, the threshold current
Jtn can be determined by solving (34) for w, with g. given by
(29). The resulting values of w’" = 0.21 x 10’2 cm~2 and
Jin/€o = 5.7x 10% cm~2.ps~! agree well with the values found
by numeric integration

Wr.s2 (1= r.WmSi?) (g5 = eS8 (1 = WnSi))

1 in in nt
= m ('reSe + 7,5}, NQD) . (34

By using the steady-state WL carrier density given by (31)
and the numeric values resulting from (34), the input—output
characteristic (32) can be approximated by

I NQP

*(7) ~0.13
nph(‘/) 2%60 Nsum

(J = Jen)- (35)

V. CONCLUSION

In conclusion, we have found that the nonlinearity of the scat-
tering rates and the inclusion of separate dynamics of holes and
electrons are crucial in order to explain the dynamic behavior
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of a QD laser. We have derived a detailed balance formula con-
necting the nonequilibrium in- and out-scattering Auger rates
via a WL carrier density depending factor. Moreover, we have
derived the steady-state characteristic and found analytic ex-
pressions for the dependence of the dynamic variables on the
pump current in the steady state.
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