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We propose a control scheme which can stabilize and fix the position of chimera states in small
networks. Chimeras consist of coexisting domains of spatially coherent and incoherent dynamics in
systems of nonlocally coupled identical oscillators. Chimera states are generally difficult to observe in
small networks due to their short lifetime and erratic drifting of the spatial position of the incoherent
domain. The control scheme, like a tweezer, might be useful in experiments, where usually only small

networks can be realized.
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The study of coupled oscillator systems is a prominent
field of research in nonlinear science with a wide range of
applications in physics, chemistry, biology, and technology.
An intriguing dynamical phenomenon in such systems is
chimera states exhibiting a hybrid nature of coexisting
coherent and incoherent domains [1-6]. So far, chimera
states have been theoretically investigated in a wide range
of large-size networks [7-31], where different kinds of
coupling schemes varying from regular nonlocal to com-
pletely random topology have been considered.

The experimental verification of chimera states was first
demonstrated in optical [32] and chemical [33,34] systems.
Further experiments involved mechanical [35], electronic
[36-38], and electrochemical [39,40] oscillator systems as
well as Boolean networks [41].

Deeper analytical insight and bifurcation analysis of
chimera states has been obtained in the framework of
phase oscillator systems [42—45]. However, most theoreti-
cal results refer to the continuum limit only, which explains
the behavior of very large ensembles of coupled oscillators.
In contrast, chimera states in small-size networks have
attracted attention only recently [46—49], although in lab
experiments usually only small networks can be realized.

There are two principal difficulties preventing the
observation of chimera states in small-size systems of
nonlocally coupled oscillators. First, it is known that
chimera states are usually chaotic transients that eventually
collapse to the uniformly synchronized state [50]. Their
mean lifetime decreases rapidly with decreasing system
size such that one hardly observes chimeras already for
20-30 coupled oscillators. Moreover, a clear distinction
between initial conditions that lead to a chimera state, and
those that approach the synchronized state is no longer
possible. Second, the position of the incoherent domain is
not stationary but rather moves erratically along the
oscillator array [51]. For large systems, this motion has
the statistical properties of a Brownian motion and its
diffusion coefficient is inversely proportional to some
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power of the system size [51]. Both effects, finite lifetime
and random walk of the chimera position, are negligible in
large size systems. However, they dominate the dynamics of
small-size systems, making the observation of chimera states
very difficult. To overcome these difficulties some control
techniques have been suggested recently. It has been shown
that the chimera lifetime as well as its basin of attraction can
be effectively controlled by a special type of proportional
control relying on the measurement of the global order
parameter [52]. On the other hand, Bick and Martens [53]
showed that the chimera position can be stabilized by a
feedback loop inducing a state-dependent asymmetry of the
coupling topology. However, the latter control scheme relies
on the evaluation of a finite difference derivative for some
local mean field. This operation may become ill posed for
small system sizes like 20-30 oscillators; therefore, one
needs to use a refined control in this case.

In this Letter, we propose an efficient control scheme
which aims to stabilize chimera states in small networks.
Like a tweezer, which helps to hold tiny objects, our control
has two levers: the first one prevents the chimera collapse,
whereas the second one stabilizes its lateral position. Our
control strategy is universal and effective for large as well
as for small networks. Although its justification relies on a
phase-reduced model, the control works also for oscillators
exhibiting both phase and amplitude dynamics.

We expect that our tweezer control can also be useful for
theoretical studies. For example, recently Ashwin and
Burylko [46] introduced the concept of “weak chimeras,”
using partial frequency synchronization as the main indi-
cator of such states. This criterion is slightly different from
a “classical” chimera state, because the random walk of the
incoherent domain results in equal mean phase velocities
of all oscillators. On the other hand, considering chimera
states stabilized by the tweezer control, one can identify
them as both classical and “weak” chimera states.

We consider a system of N identical nonlocally coupled
Van der Pol oscillators x; € R given by
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Here, the scalar parameter € > 0 determines the internal
dynamics of all individual elements. For small ¢ the
oscillation of the single element is sinusoidal, while for
large ¢ it is a strongly nonlinear relaxation oscillation. Each
element is coupled with R left and R right nearest
neighbors. We assume that the oscillators are arranged
on a ring (i.e., periodic boundary conditions) such that all
indices in Eq. (1) are modulo N. The coupling constants in
position and velocity to the left and to the right are denoted
asa_,a, and b_, b, respectively. If left and right coupling
constants are identical, i.e., a_ = a, and b_ = b, we call
the coupling symmetric, otherwise we call it asymmetric.
For the sake of simplicity we assume
a_=a, =a, b_=ao_, b, =ac,, (2)
with rescaled coupling parameters a, o_ and o,. Now,
combining control approaches from Refs. [52] and [53], we
introduce a control scheme for ¢_ and o, with the aim to
stabilize chimera states of Eq. (1) not only for large but also
for small system sizes.
Without loss of generality, we aim to pin the position of
the incoherent domain to the center of the array 1, ..., N. To
this end, we define two complex order parameters
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FIG. 1.

where ¢, () is the geometric phase of the kth oscillator
computed from

et = [x2(1) + B2(0)] 72 [0 (1) + iz ()], (5)

Then we define a “tweezer” feedback control of the form

1
oo =&(1-312+ 20 ) £ K] 1Z0). (©)

where K and K, are gain constants for the symmetric and
asymmetric parts of the control, respectively. By construc-
tion, the quantity Z = (Z, + Z,)/2 coincides with the
complex global order parameter; therefore, the feedback
terms proportional to K are analogous to the proportional
control described in Ref. [52]. They suppress the collapse
of small-size chimeras, but do not affect their random drift
on the ring. The latter is the purpose of the terms propor-
tional to K. Indeed, the difference |Z,| — |Z,| measures a
relative shift of the chimera’s position with respect to the
center of the array 1, ..., N; it is positive if the incoherent
domain is displaced towards larger indices, and hence
o, > o_. On the other hand, a discrepancy between o_
and o, corresponds to an asymmetry of the coupling and
therefore induces a counterbalancing translational motion
of the chimera state. Thus, for nonzero K, a centered
configuration of the chimera state becomes dynamically
more preferable.

Figure 1 illustrates the performance of the suggested
control scheme for the system (1)—(6) of N = 48 coupled
Van der Pol oscillators. To visualize the temporal dynamics
of the oscillators we plot their mean phase velocities

1 [T, .
a)k(t):T—OA()qSk(t—t’)dt’, k=1,...N. (7)

averaged over the time window 7y = 50. When both the
symmetric K; and the asymmetric K, control gains are
switched on [Fig. 1(a)], the system develops a stable
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Mean phase velocities for a system Eqgs. (1)—(6) of N = 48 oscillators, and R = 16, ¢ = 0.2, a = 0.02; (a) stable chimera state,

K, = 0.5, K, = 2; (b) mean phase velocity profile averaged over AT = 50 000 (top panel), snapshot of variables x; (middle panel), and
snapshot in the (x;, X;) phase space at time ¢ = 50 000 (bottom panel, limit cycle of the uncoupled unit shown in black), corresponding
to the chimera state shown in panel (a); (c) drifting chimera state, K, = 0.5, K, = 0; (d) collapse of the uncontrolled chimera state in
system Egs. (1)—(2) with constant coupling coefficients o (see text).
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FIG. 2. Same as Fig. 1 for a system Egs. (1)—(6) of N = 24 oscillators and R = 8.

chimera state without any spatial motion of the coherent
and incoherent domains. Figure 1(b) depicts the mean
phase velocity profiles averaged over the global time
window AT = 50000. It also shows a snapshot of the
chimera for variables x; as well as its projection on the
phase plane (xy, X;). If we switch off the asymmetric part of
the control K, = 0 and keep a positive symmetric gain
K, >0, we find that the chimera state starts to drift
[Fig. 1(c)]. Moreover, if we switch off also the symmetric
part of the control and replace ¢, and o_ with their
effective time-averaged values s =1 (5, +6_) obtained
from Fig. 1(a), we find a free chimera state which collapses
after some time [Fig. 1(d)]. Note that the shape of the
chimera state is almost unaffected by the control, which
indicates that it is noninvasive on average, cf. Ref. [52].

Figures 2 and 3 demonstrate that our control scheme
remains effective for smaller networks with N = 24 and
N = 12 oscillators, respectively. In the controlled system
we find chimera states with the same shape of coherent
and incoherent domains [Figs. 2(b) and 3(b)]. On the other
hand, we observe an increasing difficulty for chimera states
to survive in the uncontrolled system because of extremely
fast wandering [Figs. 2(c) and 3(c)] and short lifetimes
[Figs. 2(d) and 3(d)].

From a phase reduction in the special case of small &
and a (see Supplemental Material [54]) one can draw an
analogy of the coupling parameters o, to the phase lag
parameter of the Kuramoto model a. = (z/2) — arctano_,
and conclude that chimera states should be expected for a

(b)

1
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FIG. 3.

range of ., where a, ~ /2. Note, however, that our
control scheme does not rely on the phase reduction of
model (1) to a phase oscillator. Rather, the full model
Eq. (1) with phase and amplitude dynamics is used, and the
order parameter is constructed from the geometric phase of
the oscillators in the (x;, X;) phase plane, rather than the
dynamic phase of the phase reduced model.

To substantiate this, we have applied our control scheme
to the Van der Pol oscillator in the strongly nonlinear
regime of nonsinusoidal limit cycles (large ¢€); see
Fig. 4. To emphasize the universality of our method, we
have also demonstrated that tweezer control works
successfully for small networks of FitzHugh-Nagumo
oscillators, i.e., coupled slow-fast relaxation oscillators;
see Supplemental Material [54].

Motivation of control design.—In order to obtain
insight into the mechanism of our control scheme, we
introduce the standard deviation of the mean phase

velocity profile A, = \/ (1/N) >N (0, — @)%, where

@ = (1/N)>_N_, . Larger values of A, correspond to
a well-pronounced arclike mean phase velocity profile,
characterizing chimera states. Figure 5 depicts the influence
of the control parameters K, K, on the chimera behavior in
the network of N = 24 oscillators.

First note that, generally, large coupling constants favor
complete synchronization. Therefore increasing the sym-
metric control coefficient K has two counteracting effects:
On the one hand, increasing K increases the global order
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Same as Fig. 1 for a system Egs. (1)—-(6) of N = 12 oscillators and R = 4.
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FIG. 4. Same as Fig. 1(a) for a system Eqgs. (1)—(6) of N = 12
oscillators, R=4,a =02, K, =2, K, =1, and ¢ = 2.

parameter, which is for even N given by |Z| =1|Z, + Z,|,
where |Z| =1 corresponds to complete synchronization.
Hence, on the other hand, the symmetric control term
(I —1|Z|) in Eq. (6) decreases; i.e., the coupling constants
b_=ao_,b, = ac, inEq. (1) decrease. Thus, there exists
an optimal value of K, where K (1 —|Z, + Z,|/2) is
optimum, and the chimera state is stabilized; for smaller
K the control is not efficient, and for larger K; complete
synchronization dominates. To visualize this mechanism
better, we have plotted in the inset of Fig. 5(a) the spatial
profiles of the mean phase velocity A, B, C corresponding
to three different values of K. Roughly speaking, for larger
values of K we obtain chimera states with larger coherent
domains that are closer to the completely coherent state. On
the other hand, for smaller values K, we obtain chimeras
with a dominating incoherent domain. Thus, there exists a
range of K, where the arc shape of the mean phase
velocities [see panels (b) in Figs. 1-4] is most pronounced
and A, is maximum. Such chimeras are most likely to be
stabilized in small N systems; therefore, this explains the
optimal symmetric gain K.

Figure 5(a) shows the effect of the symmetric control K
for three values of ¢ = 0.2, 1, 5. Varying K, we stabilize

N
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0.005 o = < T
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s
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Kﬂ Kl\
FIG. 5. Standard deviation A, of the mean phase velocity

profiles for N = 24, R = 8, AT = 500000, a = 0.02. (a) Role of
the symmetric control strength K: e = 0.2 (black circles), e = 1
(red squares), € = 5 (blue diamonds), and K, = 2. Insets show
examples of mean phase velocity profiles for ¢ =1 and (A)
K,=1, (B) K;,=2, (C) K, =3. (b) Role of the asymmetry
control strength K, for different system sizes N = 12, 18, 24, and
e=0.2, K, =0.5.

chimera states with different mean phase velocity profiles
as shown for the exemplary case € = 1 in insets A, B, and
C. For each e there exists a range of parameter K, where
the symmetric control is most efficient: for large K|
chimera states approach the completely synchronized state
(A, =0). In Figs. 1-3, we have chosen K; = 0.5 for
e=0.2, close to the maximum of the black circles.
Increasing ¢ from 0.2 to 1 (red squares) increases the
amplitude of the limit cycle, and hence larger coupling
strengths are required, and the maximum of A, shifts to
larger K. For very large € (blue diamonds), A, generally
decreases. Figure 5(b) demonstrates the effect of changing
the asymmetric control gain K, for different system sizes.
The standard deviation A, sharply increases for small
values of the control strength, and then stays approximately
at the same value indicating the saturation of the position
control. Therefore, in our example ¢ = (0.2 we choose
K,=2.

The standard deviation of the mean phase velocity
profiles increases montonically with system size and
saturates at moderate sizes, as shown in the
Supplemental Material [54]. Our control scheme is also
robust with respect to variation of the nonlinearity param-
eter ¢ and with respect to inhomogeneities of ¢, corre-
sponding to an inhomogeneous frequency distribution; see
additional figures in the Supplemental Material [54].

To conclude, we have proposed an effective control
scheme, which allows us to stabilize chimera states in large
and in small-size networks. Our control is an interplay of
two instruments, the symmetric control term suppresses the
chimera collapse, and the asymmetric control effectively
stabilizes the chimera’s spatial position. We have demon-
strated the effect of the control scheme in systems of 48, 24,
and 12 nonlocally coupled Van der Pol oscillators, and
investigated the role of system parameters and control
strengths for the most efficient stabilization of chimera
states. Our proposed approach can be useful for the
experimental realizations of chimera states, where usually
small networks are studied, and it is very difficult to avoid
chimera collapse and spatial drift.
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