IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Nonlinear gain dynamics of quantum dot optical amplifiers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2011 Semicond. Sci. Technol. 26 014008
(http://iopscience.iop.org/0268-1242/26/1/014008)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 130.149.114.144
The article was downloaded on 24/11/2010 at 15:01

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0268-1242/26/1
http://iopscience.iop.org/0268-1242
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

TIOP PUBLISHING

SEMICONDUCTOR SCIENCE AND TECHNOLOGY

Semicond. Sci. Technol. 26 (2011) 014008 (11pp)

doi:10.1088/0268-1242/26/1/014008

Nonlinear gain dynamics of quantum dot

optical amplifiers

Miriam Wegert!, Niels Majer', Kathy Liidge', Sabine Dommers-Volkel?,
Jordi Gomis-Bresco?, Andreas Knorr!, Ulrike Woggon” and

Eckehard Scholl!

! Institut fiir Theoretische Physik, Technische Universitit Berlin, 10623 Berlin, Germany
2 Institut fiir Optik und Atomare Physik, Technische Universtitit Berlin, 10623 Berlin, Germany

Received 1 June 2010, in final form 12 September 2010
Published 24 November 2010
Online at stacks.iop.org/SST/26/014008

Abstract

In this work, the ultrafast gain dynamics of a quantum dot (QD)-based semiconductor optical
amplifier (SOA) is modeled on the basis of semiconductor Bloch equations that include
microscopically calculated nonlinear scattering rates between QD carriers and the surrounding
carrier reservoir. This enables us to separately study the dynamics of electrons and holes
inside the device as well as the coherent effects related to the fast polarization dynamics. We
show that the optical pulse power and the dephasing time of the polarization mainly affect the
gain depletion inside the active region, while the electric injection current density and thus the
internal carrier dynamics influence the gain recovery. We observe that carrier—carrier
scattering is the source of desynchronized behavior of electrons and holes in the recovery
dynamics of QD-based SOAs. The amplification of pulse trains in the SOA predicted by our

model agrees well with experimental data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum dot (QD)-based semiconductor optical amplifiers
(SOAs) are an important optoelectronic application of self-
organized QD structures [1]. They are excellent candidates for
high-speed data and telecom applications providing ultrafast
gain dynamics and pattern effect-free amplification [2-5].

In this paper, we investigate the ultrafast gain recovery of
QD SOAs and its underyling carrier dynamics using a quantum
mechanical approach on the basis of the semiconductor Bloch
equations [6]. The modeling of pump—probe experiments
with optical pulses on femtosecond time scales makes it
crucial to include the fast decaying polarization [7] and thus
to go beyond standard rate equation models for the SOA
[8, 9]. Based on previous works about QD lasers [10—15], we
include the strongly nonlinear character of electron—electron
scattering processes between the QD ground state and the
two-dimensional carrier reservoir which is modeled by a 4 nm
thick InGaAs layer. The acronym QW (quantum well) is
used for the carrier reservoir (instead of the former acronym
WL used in our previous works [13—15]) in order to avoid
confusion with the more common notion of a mono-molecular
wetting layer. Compared to Gomis-Bresco et al [7] who used

0268-1242/11/014008+11$33.00

constant QW carrier densities within a system-bath approach,
we include the full carrier dynamics inside the QW described
by separate microscopically based rate equations for electrons
and holes [13]. Thus, our model allows us to comprehensively
study the carrier dynamics inside the device and understand
the nonlinear gain dynamics of the SOA without the need of
external fit parameters. Propagation effects of the electric field
which would otherwise be considered within a traveling wave
equation [16] are not taken into account. In a traveling wave
approach, access to the full spatiotemporal dynamics of the
system and especially the electric field would allow further
analysis regarding, e.g. pulse shaping or phase dynamics.
These issues are beyond the scope of this work focussing on
a detailed analysis of the local response of the gain medium.
We also do not incorporate excited states or inhomogeneous
broadening in our simulations.

The paper is organized as follows. After introducing
the semiconductor Bloch equations in section 2, we analyze
the influence of the pulse area 6, the dephasing time 7, and
the injection current density j on the gain dynamics of the QD
SOA and compare with experimental results in section 3. We
investigate the effect of pulse trains on the gain medium in
section 4 , before we conclude in section 5.

© 2011 IOP Publishing Ltd  Printed in the UK & the USA
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2. Semiconductor Bloch equations

Modeling the gain dynamics of an electrically driven QD SOA
in response to an ultra-short optical pulse (see the schematic
sketch in figure 1) requires taking into account all dynamic
variables that vary on the respective time scales. Since the
experimentally observed ultrafast gain recovery occurs on a
fs time scale, we include the microscopic polarization p with
a dephasing time 7, =~ 25fs as a dynamic variable. Thus,
our model describing the SOA uses a quantum mechanical
approach based on the semiconductor Bloch equations [6].
Combined with microscopically based rate equations for the
carrier densities inside the carrier reservoir (QW) [13], we
arrive at the following set of five coupled dynamical equations
for the microscopic polarization p, the occupation probabilities
of electrons f, and holes fj, in the QD and the electron and hole
densities in the QW w, and wj,, respectively:

. Q 1
p=—iglfet fim 1= p. (1
fo=-Im[Q@p* 1+ S0 — f.) — S f. — Ryp,  (2)
fi = —Im[QMO)p* 1+ 8" (A — fu) — S fi — Ryp,  (3)

(f '

w, = n%)) — N [S(0 = fo) = S fo] = Rioss, (4

. j(t)_ sum[ qingqp _ __ qout _

wy === = N""[$'( = fi) = ;" fi] = Rioss- 5)
0

Equations (1)—-(3) form the semiconductor Bloch

equations in rotating wave approximation (RWA) for resonant
excitation, while equations (4) and (5) describe the carrier
dynamics inside the 2D carrier reservoir. The microscopic
polarization p corresponds to the probability amplitude for
an optical transition and is thus a dimensionless quantity.
Q(t) = nwE()/nh is the Rabi frequency with dipole moment
w and slowly varying envelope of the electric field E(¢). The
full complex electric field is given by £(1) = TE(@0) (e +
e’y where w; is the carrier wave frequency which
we assume to be in resonance with the optical transition
energy hv inside the QDs (see the energy diagram in
figure 1). The Rabi frequency 2 is a measure for the strength
of the coupling between light and microscopic polarization
(light-matter interaction). In this framework, the induced
processes of absorption and emission are modeled by the term
i%[ fe + fn — 1] (see equation (1)). Note that the dynamic
equations (1)—(5) do not contain the spatiotemporal evolution
of the electric field inside the device because propagation
effects are not considered. Instead we describe the local
response of the gain medium to an optical input pulse with
an envelope function E(t) = EO#E exp(—%) modeled by

a Gaussian with variance o2. We assume E(f) to be real

and polarized perpendicularly to the propagation direction.
Throughout this work, we use Gaussian input pulses for the
electric field amplitude E (¢) with a full width at half maximum
(FWHM) of 300 fs corresponding to 0 = 127.4 fs. Note
that for fixed FWHM the pulse area 6 = f Q(¢) dr directly
scales with the amplitude Ey of the Gaussian pulse. The
spontaneous emission in the QDs is given by Ry, = W, fi,

where W = %(%)3 is the Einstein coefficient with static
relative permiitivoity of the background medium ¢;,, vacuum
permittivity 9 and vacuum speed of light c. Further, j is the
current density that is electrically injected into the QW, ey is the
elementary charge and n = 1 — w,/N?V is a current injection
efficiency factor reducing the pump efficiency if carriers are
already inside the carrier reservoir (maximum density inside
the QW: w, = N?V). The QD density N**™ is twice the total
QD density as given by experimental surface measurements
(the factor 2 accounts for spin degeneracy).

Scattering-induced dephasing of the polarization is given
by adecayrate 1/ T, inequation (1). Arange of valuesof 1/ 7>,
strongly depending on the excitation conditions, have been
proposed in the literature. Under high excitation, as considered
throughout this work, we assume dephasing processes to be
strong and therefore choose a small value for 7, = 25 fs in
accordance with experimental measurements [7]. In addition,
we investigate the dependence on 75 in a range between 10 and
100 fs in section 3.2 in order to gain insight into the parameter
dependence of the gain dynamics. The phase-destroying
scattering processes, e.g. carrier—carrier and carrier-phonon
scattering, are stronger for higher temperature; therefore,
the dephasing time decreases with increasing temperature
[17]. S(Si") and S"(Sp"') describe the rates of electron
(hole) scattering into and out of the QD levels, respectively.
Figure 2(a) shows their nonlinear dependence on the QW
carrier densities. Because these rates are important for the
gain dynamics, they are discussed in more detail at the end of
this section.

Losses inside the QW are given by Rjos = Bw.wj,. In
previous works on QD lasers [13, 14], B was implemented
as a constant bimolecular recombination coefficient. Here, we
have extended this by considering Auger recombination inside
the QW [18] where the rate varies with the third order in the
QW carrier density, in addition to bimolecular recombination
processes [19, 20]. Hence, we use B = BS + BAw,. As
a consequence, the time scale reQW of carrier losses inside
the QW (Rioss = w./T2™) depends strongly on the carrier
densities inside the QW. Figure 2(b) depicts T2V at steady-
state laser operation as a function of the normalized injection
current density j/jo. jo denotes the injection current density
at transparency which is determined by zero inversion, i.e.,
fe+ fu — 1 = 0. It can be seen that a higher injection current
leads to a drastic decrease of the electron lifetime T2 because
of the increasing carrier density (a dashed line in figure 2(b)).

The non-radiative carrier—carrier scattering rates
Sn(sim) and S (Sp") describing electron  (hole)
scattering into and out of the QD-levels, respectively, are
microscopically calculated as a sum in k-space over all
possible Auger transitions between QW and QD [13]:

St =Y Why il = f) (k= QD1 —m)

kimb'

SO =" W, (1= f) (L= fi) fn

klmb’

(OD = k,m — 1),

where the transition probabilities W, /% contain the screened
Coulomb matrix elements and the energy-conserving §-
function [10, 12]. f;, f; and f,, are the occupation probabilities
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Figure 2. (a) Carrier—carrier scattering rates calculated for the QD energy levels shown in the inset of (b) for w;, = 1.5w,. Black dashed and
gray dash-dotted curves are electron in and out scattering rates, respectively. Red solid and orange dotted curves are hole in and out
scattering rates, respectively. (b) Steady-state QW electron density (right axis) and QW electron lifetime teQW = (Bwy) ! (left axis) as a
function of normalized injection current j/j,. Inset: associated energy diagram of the QD and QW systems.

of the respective QW states. Assuming quasi-equilibrium
within each of the four ensembles of carriers, the in- and
out-scattering rates are related via detailed balance [13]:

) FQW _ EQD

S = $™" exp {—e T ¢ } , (6)
) EQD _ FQW

S = Sy exp :—h [ (@)

In the above equations, EQP and E,?D are the confined QD
electron and hole energy levels, respectively, as depicted in
the energy diagram of figure 1. The quasi-Fermi levels FbQW
for electrons (b = e) and holes (b = h) in the QW depend on
the QW carrier densities w,. They are given by

FV(w,) = E? 4+ kT In [exp (p”:T> - 1} . ®

W W Wh
F™wy) = EXY — kT In [exp <phkT) - 1] .9

where EQV and E,?W are the QW band edges of conduction
and valence bands as shown in the inset of figure 2(b), k

is the Boltzmann constant and T is the temperature. The
2D densities of states in the QW given by p, = my/(wh?)
depend on the effective masses of electrons and holes m,.
Introducing the energy differences AE, = EQV — EQP and

AE, = E,?D - E}?W (see table 1), the relation between in- and
out-scattering rates can be expressed as

AEb/kT[ewb/(pka) —1]. (10)

It should be noted that because of the 2D electron gas inside
the carrier reservoir the ratio between in and out scattering
is not just a constant Boltzmann factor as widely used in
the literature, but a term that depends upon the QW carrier
density. The resulting nonlinear scattering rates used for the
simulations are shown in figure 2(a) exhibiting a pronounced
maximum in the out scattering rates (orange dotted and grey
dash-dotted line) while the in scattering rates (red solid and
black dashed line) increase monotonically.

The values of the parameters used for the simulation
are listed in table 1. The parameters are taken from
experimental data except for the Einstein coefficient W and the
recombination coefficients BS and B4 which were calculated.
The value of the transparency injection current density jo is
extracted from numerical simulations.

S (we, wy) = Sp* (we, wp) €
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Figure 3. Time series of the microscopic polarization p(¢) resulting from (@) an optical input pulse with & = 2 simulated for 7, = 10 fs
and 7, = 150 fs as dashed blue and dotted black lines, respectively (j = 20 jy) and (b) optical input pulses with & = 7 and 6 = 47 shown
as dashed blue and dotted black lines (T, = 25 fs, j = 20 jy). Solid red curves in (a) and (b): electric field amplitude E () normalized to the

maximum E.

Table 1. Numerical parameters used in the simulation unless stated
otherwise.

Symbol  Value Symbol Value

w 0.7 ns™! Num 20 x 10" cm™!
T 300 K NV 2 x 108cm™!

uw 0.6 g nm AE.(AE,) 210(50) meV
Ebg 14.2 me(mp) 0.043(0.45) my
T, 25 fs Jjo 4220 mA cm™2
BS 0.03nm? ps~!  BA 305 nm* ps~! w,

3. Full dynamic simulation of single pulses

In the experimental part of the paper, we show differential
transmission measurements on a QDs-in-a-well-based SOA to
characterize its gain dynamics. The sample studied in this
work is a p—i—n structure with a 1 mm long, 2 um wide
waveguide. The active medium consists of 15 layers of MBE-
grown QDs-in-a-well with a nominal areal density of 2 x
109 cm~2/layer. Concretely, we use the heterodyne pump
and probe technique, described in detail in [7]. In such a
setup, a sufficiently strong pump-pulse (0.1 pJ per pulse, 150 fs
full width half maximum) is followed by a delayed weak probe
pulse (with an intensity 100 times smaller). Both beams are
resonant in energy to the ground state of the quantum dots
(A = 1.3 um). The pump pulse induces a gain change of the
device, and the probe pulse measures the delayed gain state.
By varying the delay time t, the local gain recovery dynamics
inside the device can be approximated by the normalized gain
defined as

¢(®,7) = —wIm (Ppump+pr0be(w’ T) — Ppump(w)> . an

gprobe (w)

Here, Poumpsprobe(®) and  Pyope(w) are the Fourier
amplitudes of the macroscopic polarizations for the case
of both pump and probe and only probe pulse passing
through the device, respectively, and Eyope () is the Fourier
amplitude of the full complex electric field £(¢) of the probe
pulse. Because the dynamic variable p(#) determined by
equation (1) describes the microscopic polarization inside
one QD, the macroscopic polarization P(t) is obtained by
summing the product of microscopic polarization and dipole
moment p over all QDs giving P(t) = N*™up(t). Since
the slowly varying envelope approximation was applied to

the microscopic polarization p(t), the Fourier amplitude of
the macroscopic polarization is given by P(w) = §(wp —
w) f P(r)dr with wy being the frequency of the optical
transition inside the QDs. As said before we assume to
resonantly excite the QD SOA (wy & wy). Thus, we can
neglect the frequency dependence and use a normalized gain
g(t) = g(wy, 7) to characterize the gain recovery.

To illustrate the basic mechanisms of the gain dynamics,
the time evolution of the microscopic polarization p(z) of
the gain medium after being exposed to an optical input pulse
with electric field amplitude E (¢) is discussed in the following.
Note that equations (1)—(3) have an oscillatory solution with
p(t) ~ &% if constant amplitude E(t) = E,, zero damping
of the polarization, i.e. 7, = 00, and zero scattering and zero
spontaneous emission in the carrier equations are assumed.
Thus, in this case, polarization and carrier inversion are
periodic functions with period T = 2m /2 which is called
a Rabi cycle. For our case of an electric input pulse with
amplitude E(t), we define the pulse area 6 as the time integral
over the Rabi frequency 6 = [Q(r)dr = & [ E(r)dr. This
gives a dimensionless quantity 6 related to the optical input
power in the case of a positive-valued pulse shape such as
a Gaussian pulse. Without losses a pulse with § = 2x
leads to a complete Rabi cycle of p(t). Figure 3(a) shows
p(t) as resulting from an optical input pulse E(¢) (solid red
curve) with 6 = 2x for different dephasing times 7,. While
the polarization amplitude for a short dephasing time 7, =
10 fs (dashed blue line in figure 3(a)) is rapidly damped due
to scattering induced dephasing, it shows almost a full Rabi
cycle for T, = 150 fs (dotted black line). The polarization
amplitude p(¢) is also rapidly destroyed for a dephasing time
of T, = 25, chosen for most of the simulations in this paper,
and a pulse area of § =  as shown with the dashed blue line
in figure 3(b). However, drastically increasing the input pulse
area to 0 = 4 leads to a damped Rabi cycle as depicted with
the dotted black line in figure 3(b).

Figures 4(a) and (b) show the time series of the QD
occupation probabilities f, and f}, resulting from the optical
input pulse shown in figure 3 (solid red line). At ¢ = 2 ps, the
light field arrives and both f, and f; first decrease rapidly due
to carrier depletion by stimulated radiative recombination, and
finally they asymptotically recover their initial values when
the light pulse has passed. The recovery process of electrons
is much slower than that of holes as visible by comparing
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Figure 4. Time series of the dynamic variables as resulting from the optical input pulse shown in figure 3. (a), (b) Occupation probabilities
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blue curve in (a). Parameters: 0 = w, T, =25 fs, j = 20 jj.
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Figure 5. Phase space projections of the trajectories resulting from the optical input pulse shown in figure 3. (a) (f., fi)-plane,
(b) (w,, wp)-plane, (¢) (f., w.)-plane and (d) (f,, wy)-plane. The points marked A, B, C correspond to the arrival of the pulse (A),
beginning of the QD carrier recovery (B), and complete recovery of QD electrons (C). Time traces between 0 and 10 ns have been used.

Parameters: 0 =, T, =25 fs, j = 20 j.

figures 4(a) and (b). Figures 4(c) and (d) show time traces
of w, and w;, both exhibiting a continuous decrease as soon
as the QD carriers start to recombine radiatively. The QW
carrier densities are not directly affected by the optical input
pulse but change due to their scattering-induced coupling to
the QD levels. Therefore, the QW carrier densities decrease
further until the pump term in equations (4) and (5) exceeds the
depopulation due to refilling of the QD levels. To shed further
light on the carrier dynamics, we analyze the trajectories of
figure 4 in different phase space projections. Figure 5(a) shows

a plot of f, versus f; clearly indicating that the dynamics
of electrons and holes in the QDs is desynchronized. The
points marked A, B, C correspond to the arrival of the pulse
(A), beginning of the QD carrier recovery (B), and complete
recovery of QD electrons (C), respectively. The times A, B,
C are also marked in the transients shown in figure 4. In
the case of synchronized dynamics of electrons and holes, the
plot would show a single line, instead a bow-like structure is
seen in figure 5(a). While the initial depopulation (A — B)
caused by stimulated absorption is of course synchronous, the
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probability of QD electrons f,(¢). Parameters: j = 20 jy, 7> = 25 fs.

recovery (B — C — A) is desynchronized. At first the
holes recover faster than the electrons, then the relaxation of
holes is slowed down (B — C). At point C, the electron
population has reached its initial value and only the hole
population still increases to its starting value (C — A). This
part of the relaxation dynamics is very slow (>1 ns). The
recovery dynamics for times ¢ > T,, when the polarization has
decayed sufficiently, is governed by the microscopic scattering
rates. The desynchronized behavior of electrons and holes in
figure 5 is therefore directly linked to the scattering processes.
While the in-scattering rates for electrons and holes are
approximately of the same order for the given QW densities,
the out-scattering rates for holes are orders of magnitude larger
than those of electrons (see figure 2(a)) resulting in different
relaxation time scales.

Figure 5(b) shows phase portraits projected onto the
(we,wp)-plane. As in figure 5(a), electrons and holes in the
QW partly show desynchronized dynamics which is again
related to the different time scales induced by the scattering
rates. Acting as a reservoir for the localized QD levels, a
drain of QW carriers is induced during the transition from
B to C in figure 5(b) corresponding to a refill of the QD
populations (see figure 5(a)). When the QD levels are refilled
sufficiently, the QW dynamics is dominated purely by the
injection current which is equal for both electrons and holes
(C — B in figure 5(b) ). To illustrate the QD QW coupling,
figures 5(c) and (d) show phase space projections onto the
(fe, we)- and (fy, wy)-plane, respectively. Both plots have a
triangular shape. When the pulse arrives, the QD occupation
probabilities decrease (A — B). Starting from point B, the QD

populations increase while the QW carrier densities decrease.
At point C, the occupation probability of electrons has fully
recovered. Going from C back to A, only slight changes in the
QD hole populations are visible and mainly the QW carriers
recover.

To analyze the gain recovery of the amplifier, we have to
model the dynamics for a pump and a probe pulse entering the
device. Figure 6(a) shows the electric field amplitude E(t)
for a fixed delay time of T = 2 ps between the peak of the
pump pulse (Ef ") and the peak of the probe pulse (Egmbe)
as a function of time. The ratio between optical pump and
probe pulse amplitudes is set to Ef°™ JES™ = 0.01. The
resulting gain calculated from equation (11) is plotted against
the pump—probe delay time 7 in figure 6(b). Here, the gain is
normalized to the value at times long before the pump pulse
arrives. Figure 6(b) shows three phases of gain dynamics.
First, the gain is depleted by the entering pump pulse (I)
followed by a phase of ultrafast gain recovery (II) which is
related to the coupled dynamics of the QD populations and the
microscopic polarization. At last a slow recovery (III) takes
place corresponding to the dynamics of the QD and QW charge
carriers which is determined by the nonlinear carrier—carrier
scattering rates.

3.1. Influence of the pulse area

Figure 7(a) shows the imaginary part of the microscopic
polarization p(¢) after the interaction of the gain medium
with a single optical pulse with different pulse areas 6. With
increasing 6, corresponding to a larger electric field amplitude,
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Jj =20 jo, T, = 25 f's. Time traces between 0 and 10 ns have been used.

p(t) increases and the maximum shifts to smaller times. This
effect can be understood by looking at figure 7(b) which shows
a plot of the QD electron population for different pulse areas.
With increasing 6, the carrier populations are depleted more
strongly as the pulse interacts with the QD gain medium.
Therefore, starting with the arrival of the pulse the associated
gradual reduction of the inversion during the passing time of
the pulse also becomes stronger for larger input pulses. Since
the strength of the light—matter interaction and the induced
polarization of the gain medium depend on the population
inversion, this effect shifts the peak polarization amplitude
toward the leading edge of the optical input pulse where it
experiences a larger inversion as shown in figure 7(a).

Figure 8 depicts phase portraits of different sections of the
phase space showing the trajectory of the dynamic variables
after being exposed to a single optical input pulse. To clarify
the impact of the pulse area, each plot contains three curves
referring to 6 = 0.57, 6 = mw and 8 = 1.57 plotted as
solid red, dashed blue and dotted black lines, respectively.
The qualitative dynamical behavior shown in the phase plots
is similar to that discussed in figure 5. We observe that the
pulse area scales the phase space trajectories in such a way
that for increasing pulse areas the amplitude in phase space is
increased.

Figure 9(a) shows the influence of the pulse area on the
simulated gain g(t) obtained with equation (11). It can be
seen that the magnitude of the gain depletion (indicated by
phase I in figure 6(b)) increases with increasing pulse area
0. As stated earlier, the pulse area directly corresponds to
the optical input power thus allowing a direct comparison
with experiments obtained with different optical pump pulses
as published by Gomis-Bresco et al [7]. In agreement with
our results, they found a similar trend for the dependence

of the gain recovery dynamics on the optical pump power.
Throughout the literature, the recovery dynamics is often
described by recovery time scales that are obtained by linearly
fitting a multi-exponential decay. However, we prefer not
to extract those times because the highly nonlinear Bloch
equation approach combined with the microscopic scattering
rates does not yield constant recovery times. Instead they vary
with operating conditions (i.e., pump current, pulse area) and
constant values would be misleading.

3.2. Effect of dephasing time

This section is dedicated to the effects of the dephasing time
T, on the gain recovery dynamics of QD SOAs. Similarly
to the last section, we are going to investigate single pulses
and pump-probe configurations with time traces and phase
space projections. Figure 10(a) shows the influence of the
dephasing time on the imaginary part of the microscopic
polarization. For increasing dephasing times, the microscopic
polarization amplitude also increases. Increasing dephasing
time directly corresponds to lower damping caused by the
—T% p term in the dynamical equation for the polarization
(equation (1)), therefore building up a stronger polarization
for constant input pulse power. Here, the combination of the
input pulse area and 7, causes a shift of the peak polarization
toward the trailing edge of the input pulse, because the
polarization is sustained longer and a small input pulse area
affects the inversion relatively little within the duration of the
pulse. Figure 10(b) depicts the dephasing time dependence
of the occupation probability of electrons. The reduction of
the QD electron population is enhanced for increasing 7, due
to a stronger light—matter interaction. Figure 11 shows phase
space portraits of the dynamic variables while exposed to an
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exposed to an optical input pulse with 6 = 0.5 7 (dash-dotted orange curve). Solid red, dashed blue and black dotted curves correspond to
T, =101s, T, = 80 fs and 7, = 150 fs, respectively. Parameters: j = 20 jo.

optical pump pulse. Different sections of the phase space
(the same as in figure 5) are displayed for varying dephasing
times of T, = 10 fs, 7, = 80 fs and 7, = 150 fs as solid
red, dashed blue and black dotted curves, respectively. The
dynamical behavior visible in the phase space projections of
figure 11 strongly resembles the dynamics shown in figure 5.
Comparing the influence of the dephasing time and the
pulse area on the carrier dynamics, we see that variation of
both quantities shows the same qualitative effect, namely an
enlarged phase space excursion for an increasing value in both
cases. The resulting gain recovery dynamics for varying
T, is shown in figure 9(b). For an increased dephasing
time, the gain depletion increases just as in the case of
increasing 6.

3.3. Influence of injection current density

The injection current density used for an electrically pumped
QD SOA device also influences the amplifier performance and
will be discussed now. Figure 12(a) shows the time series
of the microscopic polarization p(t) if the gain medium is
inverted with different injection current densities j (j = 10 jy,
Jj = 15, and j 20 jo), before being exposed to the
optical input pulse. It can be seen that the absolute value
of the minimum of p(¢) increases with growing injection
current density. The reason is that the microscopic polarization
depends on the inversion ( f, + f — 1) (see equation (1)) which
is also affected by changes in j. Figure 12(b) shows time
traces of the QD electron occupation probability f, for varying
injection current density j. Apparently, with increasing
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injection current the QD electron and hole levels are initially
more strongly populated due to increased in-scattering into the
QDs (see phase plots in figure 13). This in turn leads to a larger
population inversion that results in a stronger light-matter
interaction depleting more carriers from the QD electron
and hole levels. Also, the higher initial carrier depletion
reduces the effect of Pauli blocking and therefore increases
the recovery rate of the QD carrier population with growing
injection current. Note that under variation of the pulse area
0 or the dephasing time 7, the initial carrier populations
are not affected as shown in figures 7 and 10 in previous
sections. In figure 13, we analyze phase portraits of the
dynamic variables for different phase space projections after
injecting an optical pump pulse as in figures 5 and 11. Each
plot contains three curves referring to j = 10 jo, j = 15 joand
Jj = 20 jp depicted as solid red, dashed blue and dotted black
lines, respectively. Contrary to figures 8 and 11, variation
of the injection current density notably affects the initial QD
carrier populations and QW carrier densities. Figure 13(a)
displays phase space plots in the (f., f,)-plane for the three

different injection current densities. It can be seen that the
initial occupation probabilities are shifted to higher values for
increasing injection current densities and also the phase space
excursions become slightly larger for an increased injection
current. The shift of the initial QD occupation probabilities is
stronger for holes since the electrons are already highly filled
for small injection current densities.

Figure 13(b) shows the dynamics in the (w,., w;,) phase
space projection. As mentioned before, a notable increase of
both w, and wj; with increasing injection current density can
be observed, while only little changes within each phase plot
corresponding to different injection currents j are visible. In
figures 13(c) and (d), the trajectories are shown in the ( f,, w,)
and (f,,w;,) phase space projection. Again, we see a drastic
change in the QW carrier densities corresponding to different
injection currents j both for electrons and holes, while within
each phase plot for fixed j the QW carrier densities do not
vary much. As already shown in figure 12(b) for electrons,
we observe significant changes of both f, and f;, for all chosen
injection current densities.



Semicond. Sci. Technol. 26 (2011) 014008

M Wegert et al

(a) 0.7 T T
<06 L7 1
0.5 . :
0.94 0.96 0.98 1
fe
(o P S
— 11+ 1
o
£
c'}C e et e e o,
o
= 9t 1
)
z
7 . ;
0.94 0.96 0.98 1

f

e

(b) 13 —— T
— =10 ,
— — — - =15
(}‘E 11 1=20l g
mC -
=
= 9r 1
= .
7 1 1
7 9 11
3 -2
W, [107°nm™]
(d) 13 T
&
g 111 b
(")C -
o
= 9r 1
= —_—
7 1
0.5 0.6 0.7
fn

Figure 13. Phase space plots of trajectories as shown in figure 5 but for devices inverted with different pump currents. Solid red, dotted blue
and dashed black lines correspond to j = 10 jy, j = 15 jo and j = 20 jj, respectively. Parameters: 6 = 0.5 7, T, = 25 fs. Time traces

between 0 and 10 ns have been used.

The resulting gain recovery dynamics under variation of
Jj is shown in figure 9(c). Apparently the initial gain depletion
and the ultrafast gain recovery (indicated by I and II in figure
6(b)) remain almost unchanged under variation of j. Instead
mainly the slow phase of the gain recovery (indicated by III
in figure 6(b)) is influenced by j, showing enhanced recovery
for higher injection currents. As discussed before by means
of the carrier dynamics, this effect is caused by the nonlinear
in-scattering rates plotted in figure 2(a) as they increase
with the carrier density in the reservoir. Comparing figure
9(c) with figures 9(a) and (b), where changes in the gain
recovery dynamics with 6 and 75, respectively, are plotted, it
becomes apparent that the behavior is qualitatively different
for varying j. Figure 9(d) depicts experimental time traces
of the normalized single-pass intensity gain of the QD SOA,
e.g. the ratio of input and output intensity of the signal, for
varying injection currents and an input pulse energy of
0.1 pJ. The theoretically predicted behavior in
figure 9(c) nicely resembles the experimental results
showing that the gain depletion and the ultrafast gain recovery
are unaffected whereas the slow dynamics (non-coherent
processes) of the gain recovery accelerates with increasing
injection current.

Note that the measured transparency current of the
device is Iy = 5.6 mA, yielding a quantitative discrepancy
between simulated and experimental pump currents in
figure 9(c) and (d). However, since we do not perform transport
simulations and thus neglect effects like leakage currents or
space-dependent transport our focus lies on the qualitative
comparison. It is also difficult to quantitatively compare the
pulse area to the experimental pulse energy. The pulse area
is related to the amplitude of the electric field envelope of the
optical input pulse. Integrating the resulting energy density

10

(proportional to the square of the electric field) over the lateral
dimension of the waveguide results in an input pulse energy
in the order of femto-Joule that enters the active region in our
simulations. In the experiments, the focus of the incoming
beam is round and bigger than the rectangular active region
which makes it hard to estimate the energy that really enters
the device.

4. Simulation of pulse trains

For applications in ultrafast optical networks, QD SOAs
must be able to amplify femtosecond pulse trains with high
repetition rates. To study the potential of QD SOAs for
THz pulse train amplification, the gain reduction A plays
a crucial role. The definition of A is illustrated in the
inset of figure 14(b) that displays the measured normalized
gain after two optical pulses separated by 1 ps entered the
device. Figure 14(a) shows the simulated gain reduction
A as function of the pulse repetition rate for two different
pulse areas 6 = 0.5 (squares) and 6 = m (circles) and two
pump currents of j = 20 jy (dotted lines) and j = 60 jy
(solid lines), respectively. A increases with rising pulse
repetition rate. This effect is stronger for larger 6 because
6 scales the magnitude of the gain depletion (see figure 9(a))
which yields increased initial gain depletion and gain recovery
time for larger 0. Consequently, for fixed delay time t, the
gain reduction is larger for larger input pulses. Figure 14(b)
depicts the measured gain reduction as a function of the pulse
repetition rate. In agreement with our theoretical predictions,
A increases for higher pulse repetition rates. Additionally, the
simulated results of the gain reduction plotted in figure 14(a)
show a strong dependence on the electric pump current such
that larger j leads to significantly smaller gain reduction.
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Figure 14. (a) Calculated gain reduction A as a function of the pulse repetition rate for & = 0.5 7 (squares) and 6 = 7 (circles) for a pump
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pulse repetition rate. Inset: measured normalized gain after the injection of two optical pulses separated by 1 ps illustrating the definition of

A (electric pump current / = 150 mA).

5. Conclusion

In conclusion, we have investigated the ultrafast gain
recovery dynamics of QD SOAs using an approach based on
semiconductor Bloch equations combined with microscopic
carrier—carrier scattering between QW and QD states and
equations for the QW carrier dynamics. The ultrafast gain
depletion was found to be sensitive against changes of the pulse
area and the dephasing time of the microscopic polarization,
while the injection current density mainly influences the non-
coherent (slow) part of the gain recovery dynamics. A detailed
analysis of the underlying carrier dynamics using phase space
projections revealed desynchronized behavior of electrons and
holes in the recovery dynamics of the QD SOA that are
directly related to the different microscopic scattering rates.
The calculated gain recovery curves show good qualitative
agreement with the experimental results found in pump—probe
measurements.

Acknowledgment
This work was supported by DFG in the framework of Sfb787.

References

[1] Bimberg D, Grundmann M and Ledentsov N N 1999 Quantum
Dot Heterostructures (New York: Wiley)

[2] Akiyama T, Hatori N, Nakata Y, Ebe H and Sugawara M 2003
Phys. Status Solidi (b) 238 301

[3] Bimberg D and Ledentsov N N 2003 J. Phys.: Condens.
Matter 15 R1063

11

(4]
(5]
[6]
[7]

(8]
(9]

[10]

(1]

[12]

[13]

[14]
[15]

[16]

[17]
(18]

[19]

(20]

Bimberg D 2005 J. Phys. D: Appl. Phys. 38 2055

Borri P, Langbein W, Hvam J M, Heinrichsdorff F,

Mao M H and Bimberg D 2000 /EEE Photon. Technol.
Lett. 126

Chow W W and Koch S W 2004 Semiconductor-Laser
Fundamentals (Berlin: Springer)

Gomis-Bresco J, Dommers S, Temnov V V, Woggon U,
Lammlin M, Bimberg D, Mali¢ E, Richter M, Scholl E
and Knorr A 2008 Phys. Rev. Lett. 101 256803

Kim J, Meuer C, Bimberg D and Eisenstein G 2009 Appl.
Phys. Lett. 94 041112

Gomis-Bresco J, Dommers S, Temnov V V, Woggon U,
Martinez-Pastor J, Limmlin M and Bimberg D 2009 /EEE
J. Quantum Electron. 45 1121

Nielsen T R, Gartner P and Jahnke F 2004 Phys. Rev. B
69 235314

Mali¢ E, Ahn K J, Bormann M J P, Hovel P, Scholl E,

Knorr A, Kuntz M and Bimberg D 2006 Appl. Phys. Lett.
89 101107

Mali¢ E, Bormann M J P, Hovel P, Kuntz M, Bimberg D,
Knorr A and Scholl E 2007 IEEE J. Sel. Top. Quantum
Electron. 13 1242

Liidge K and Scholl E 2009 IEEE J. Quantum Electron.

45 1396

Liidge K and Scholl E 2010 Eur. Phys. J. D 58 167

Otto C, Liidge K and Scholl E 2010 Phys. Status Solidi (b) 247
829

van der Poel M, Gehrig E, Hess O, Birkedal D and Hvam J M
2005 IEEE J. Quantum Electron. 41 1115

Dachner M R et al 2010 Phys. Status Solidi (b) 247 809

Pikal J M, Menoni C S, Thiagarajan P, Robinson G Y
and Temkin H 2000 Appl. Phys. Lett. 76 2659

Scholl E, Bimberg D, Schumacher H and Landsberg P T 1984
IEEE J. Quantum Electron. 20 394

Scholl E 1988 IEEE J. Quantum Electron. 24 435


http://dx.doi.org/10.1002/pssb.200303048
http://dx.doi.org/10.1088/0953-8984/15/24/201
http://dx.doi.org/10.1088/0022-3727/38/13/001
http://dx.doi.org/10.1109/68.849054
http://dx.doi.org/10.1103/PhysRevLett.101.256803
http://dx.doi.org/10.1063/1.3073715
http://dx.doi.org/10.1109/JQE.2009.2021565
http://dx.doi.org/10.1103/PhysRevB.69.235314
http://dx.doi.org/10.1063/1.2346224
http://dx.doi.org/10.1109/JSTQE.2007.905148
http://dx.doi.org/10.1109/JQE.2009.2028159
http://dx.doi.org/10.1140/epjd/e2010-00041-8
http://dx.doi.org/10.1109/JQE.2005.852795
http://dx.doi.org/10.1002/pssb.200945433
http://dx.doi.org/10.1063/1.126435
http://dx.doi.org/10.1109/JQE.1984.1072400
http://dx.doi.org/10.1109/3.143

	1. Introduction
	2. Semiconductor Bloch equations
	3. Full dynamic simulation of single pulses
	3.1. Influence of the pulse area
	3.2. Effect of dephasing time
	3.3. Influence of injection current density

	4. Simulation of pulse trains
	5. Conclusion
	Acknowledgment
	References

