DY 34.23

Control of noisy oscillations in the Van der Pol system

berlin

J. Pomplun, A. Amann, A. Balanov, and E. Schöll Insitut für Theoretische Physik, Technische Universität Berlin

0. Introduction

We present a mean field approximation for the noisy Van der Pol system with time-delayed feedback below the Hopf bifurcation. It goes beyond the usual linearization of a stable focus and takes into account the nonlinearity self-consistently.

We compare our analytical results to numerical simulations of the power spectral density and the correlation time in a regime with large noise intensity.

1. Model

Noisy Van der Pol oscillator with time-delayed feedback control.

$$\dot{x} = y$$

$$\dot{y} = -\omega_0^2 x + (\epsilon - x^2) y + \underbrace{D\xi(t)}_{noise} + \underbrace{K[y(t - \tau) - y(t)]}_{control}$$
(1)

 ϵ : Bifurcation parameter

 $\omega_{\scriptscriptstyle 0}$: Basic frequency

 ξ : Gaussian white noise

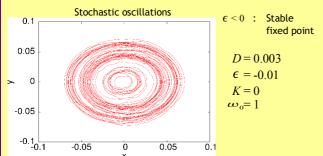
D: Noise intensity

 τ : Delay time

K: Feedback strength

2. Noise induced oscillations

Phase portrait of the system below the Hopf bifucation:



Aim: Use time-delayed feedback to control important oscillation features like **coherence** and **timescales** [1].

3. Multivariate Ornstein-Uhlenbeck process

$$d \underline{x}(t) = -\underline{A}\underline{x}(t)dt + \underline{B}\underline{d}\underline{W}(t)$$

 $\underline{\underline{A}}$, $\underline{\underline{B}}$ = const. , $\underline{\underline{W}}(t)$ Wiener process

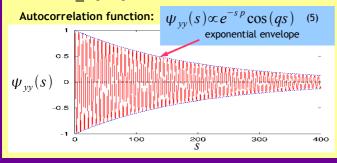
Stationary variance matrix:

$$\underline{\underline{\sigma}} = \langle \underline{x}(t), \underline{x}^{T}(t) \rangle = \frac{(Det \underline{\underline{A}}) \underline{\underline{B}} \underline{\underline{B}^{T}} + [\underline{\underline{A}} - (Tr \underline{\underline{A}}) \underline{\underline{1}}] \underline{\underline{B}} \underline{\underline{B}^{T}} [\underline{\underline{A}} - (Tr \underline{\underline{A}}) \underline{\underline{1}}]^{T}}{2(Tr \underline{\underline{A}})(Det \underline{\underline{A}})}$$
(2)

Time correlation matrix:

$$\psi_{x_{j}x_{k}}(s) = \langle x_{j}(t-s), x_{k}^{T}(t) \rangle = \underline{\underline{\sigma}} \underline{\underline{O}} \exp \left| \begin{pmatrix} (-p+iq)s & 0 \\ 0 & (-p-iq)s \end{pmatrix} \right| \underline{\underline{O}}^{-1}$$
(3)

eigenvalues of $\underline{A}: p \pm iq$ (4)



4. Mean field approximation of the Van der Pol system

Self-consistent linearization of the Van der Pol system without control (for ϵ <0):

$$(\epsilon - x^2) \approx (\epsilon - \langle x^2 \rangle) = \tilde{\epsilon}$$
 (6)

Van der Pol

Ornstein-Uhlenbeck

$$\underline{A} = \begin{bmatrix} 0 & -1 \\ \omega_0^2 & -\tilde{\epsilon} \end{bmatrix} \underline{B} = \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix} \quad (7)$$
 with (2)
$$\langle x^2 \rangle = \frac{D^2}{-2\tilde{\epsilon}\omega_0^2}$$
 (8)

self-consistent mean field approximation with (6),(8):

$$\tilde{\epsilon} = \frac{\epsilon}{2} \left(1 + \sqrt{1 + \frac{2D^2}{\epsilon^2 \omega_0^2}} \right) \tag{9}$$

5. Mean field approximation of the correlation time

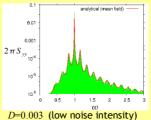
$$t_{cor} = \frac{1}{\psi_{yy}(0)} \int_{0}^{\infty} |\psi_{yy}(s)| ds \approx \frac{2}{\pi} \frac{1}{p} \frac{(4),(7)}{p} = \frac{2}{\pi} \frac{2}{|\tilde{\epsilon}|}$$
(10)
$$t_{cor} = \frac{1}{\psi_{yy}(0)} \int_{0}^{\infty} |\psi_{yy}(s)| ds \approx \frac{2}{\pi} \frac{1}{p} \frac{(4),(7)}{p} = \frac{2}{\pi} \frac{2}{|\tilde{\epsilon}|}$$
(10)
$$t_{cor} = \frac{1}{\psi_{yy}(0)} \int_{0}^{\infty} |\psi_{yy}(s)| ds \approx \frac{2}{\pi} \frac{1}{p} \frac{1}{|\tilde{\epsilon}|} = \frac{2}{\pi} \frac{2}{|\tilde{\epsilon}|}$$
(10)

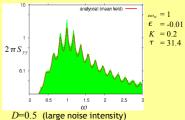
Very good agreement between theory and simulations over a large range of noise intensities

6. Analytical approximation of the power spectral density

Power spectral density $~S_{yy}$ of linearized Van der Pol oscillator [2] with mean field $~\tilde{\epsilon}$

$$S_{yy}(\omega) = \frac{D^2}{2\pi} \frac{\omega^2}{\left[\omega^2 - \omega_0^2 + \omega K \sin(\omega \tau)\right]^2 + \omega^2 \left[\tilde{\epsilon} - K \left[1 - \cos(\omega \tau)\right]\right]^2}$$
(11)





Very good agreement between theory and simulations even for large noise intensities

7. Conclusions

- Van der Pol system with time-delayed feedback can be approximated by a
- Very good agreement of the power spectral density and correlation time with simulations even for large noise intensities.

8. References

- [1] N. B. Janson, A. G. Balanov, and E. Schöll. Delayed feedback as a means of control of noise-induced motion. *Phys. Rev. Lett.* 93,010601 (2004)
- [2] E. Schöll, A. Balanov, N.B. Janson, and A. Neiman. Controlling stochastic oscillations close to a Hopf bifurcation by time-delayed feedback. Stochastics and Dynamics (2005)