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Quantum Dot Structures
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. Model of the QD System
IntrOdUCtlon i —["e”_ }C" S * QD system: two Quantum dots embedded
IU collector |

The current transport through devices consisting of layers with
quantum dots has attracted considerable interest for the
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between an emitter and a collector contact
* each QD has one discrete energy level €

semiconductor technology. |

With decreasing dot size single electron/hole tunneling effects
become visible leading to single peaks in the I(V)

.. Xoulomb charging energy
electron transition rate

Fermi function at the emitter contact — electron enters the QD system

characteristic. Master Equation

* master equation describes the temporal evolution of the occupation probabilities P,
combined to the vector P

In the following the current instabilities in a resonant
tunneling Quantum Dot Structure will be studied with
a master equation approach. The structure is
embedded in an external circuit. Due to the strong
negative differential conductance several fixed points
exist and the performance of the device is crucially
dependent on the chosen parameters.

P=MP with P — (Poo, Pro. Por. Pu)t

* matrix M contains all gain and loss processes scetched above
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U = kpT'/0.03 ~ 2.8TmeV
The bifurcation analysis is done using
linear stability analysis for the QD system.
Current propagator
A global bifurcation is
found with nume-
rical integration.

* external circuit ensures a global coupling Collector

* additional dynamic variable U

* capacity C and resistance R
are easily changeable parameters

Differential equations
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Stationary solutions
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Passive external circuit (R,C positive)

* for a passive external circuit
two stable nodes and one
saddle point exist in phase
space
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* the saddle point separates
the basins of attraction for the
two stable nodes

¢ all eigenvalues are real

* a Hopf bifurcation is NOT
possible because the analytic
condition  cannot be fullfiled
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* the fixpoints on the positive conductivity branches
are sadd\egoints or stable nodes depending on the
polarity of

* negative capacitance, can easily be realized by an
active circuit consisting of operation amplifiers [2,3]
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* with negative G the fixpoint on branch 2 undergoes
a Hopf Bifurcation

* there is no inverse Hopf bifurcation which ensures
a shrinking Limit Cycle - Instead the LC collides with
the saddle ponit in a Blue Sky Catastroph
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* relaxation time of the circuit RC is
chose to be of the order of the
transition rates 1/I"

* three fixed poin;s for V,~ 04019V and
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Saddle-noda-biturcation
* where the load line touches the extrema of the stationary current
Saddle node bifurcations occure

Possible Applications

* fast switching of the device could be achieved by either varying the
external voltage V,or the series resistance R

Blue Sky Catastrophe-Global Bifurcation

Transients in Phase Space

Frequency at the bifurcation Point

LimitCyclo: G= 4,38
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* _the frequency stays constant at the Hqi}f
V,0.4018 v I e

bifurcation’ while it ﬁoes 0 zero (i
period) at the global homoclinic bifurcation
* after the LC has touched the saddle anint
%blue sky catastrophe) there is no stable

ixed point in the system

——G=- 4050 10 F (Diverging ractory)
——C=- 4085 10"'F (Diverging irasczony)
Nulicines.

Active External circuit (C negative )
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= Hopf Biurcation

Bifurcation diagram
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* for an active external circuit the two fixed points on

] the positive conductivity branches 1 & 3 are saddle
| oints while the fixpoint in the middle 2 undergoes a
lopf bifurcation
igeny are real exept

two eigenvalues of the

middle branch 2
* Saddle node bifurcations at
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* following the Hopf bifurcation through the
Farameler space (R,C) one obtains the'green
ine that shows the transition from the stable
focus to the LC and an unstable focus

- i[n the shaded areas the eigenvalues are all
real
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the limit cycle vanishes at rh(ai1 homofclinig

bifurcation which is exemplary shown for
appr. 110°Q2 with the violet dots
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For C>0 we show that oscillatory

instabilities caused by a Hopf bifurcation
There is #3A08kOEBIt on the negative conductivity
branch that separates the basins of attraction for
the two stable nodes.
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resistance R /¢ — Blue Sky Catastrophe
Thus, the resonant tunneling QD structure could be used as
a fast switching device

For C<0 a there is a Hopf bifurcation leading to uniform limit
cycle oscillations. With increasing absolute value of C the
oscillation amplitude increases while its shape transforms from
an elliptic to a strongly nonlinear relaxation-type shape. At a
certain value of C the limit cycle collides with the saddle-point
on the low current branch and disappears. This represents a
global homoclinic bifurcation.
Comparing the performance with a conventional double barrier
resonant tunneling diode (DBRT) using a quantum well [4] we find
that for the N-shape of the QD (V) no inverse Hopf bifurcation
exists but parameter sets whithout stable fixed points.

Comparison to double barrier resonant tunneling diode with quantum well

Stability: eigenvalues
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* Stationary solutions show a
Z-shaped I(V) curve
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roal part of both Eigenvalues
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aring the performance of both systems some similarities but also some essential differences can be found.

* Com,
The ishape of the DBRT (V) curve has a bistability range leading to a inverse Hopf bifurcation.
This ensures the existence of at least one stable fixed point.
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