

Quantum Dot Structures

Kathy Lüdge and Eckehard Schöll Technische Universität Berlin, Institut für Theoretische Physik

Introduction

The current transport through devices consisting of layers with quantum dots has attracted considerable interest for semiconductor technology.

With decreasing dot size single electron/hole tunneling effects become visible leading to single peaks in the I(V) characteristic.

In the following the current instabilities in a resonant tunneling Quantum Dot Structure will be studied with a master equation approach. The structure is embedded in an **external circuit**. Due to the strong negative differential conductance several fixed points exist and the performance of the device is crucially dependent on the chosen parameters.

The bifurcation analysis is done using linear stability analysis for the QD system.

A global bifurcation is

Model of the QD System

- QD system: two Quantum dots embedded between an emitter and a collector contact
- each QD has one discrete energy level \mathcal{E}_{i}
- ... Xoulomb charging energy ... electron transition rate
- ... Fermi function at the emitter contact

Configuration Space (QD₁,QD₂)

electron enters the QD system

Master Equation

$$\underline{\dot{P}} = \underline{M}\,\underline{P} \quad \text{with} \quad \underline{P} = (P_{00}, P_{10}, P_{01}, P_{11})^T$$

- master equation describes the temporal evolution of the occupation probabilities P. combined to the vector P

$$\underline{\underline{M}} = \begin{pmatrix} -\Gamma_c^{(1)}f_c^{(1)} - \Gamma_c^{(2)}f_c^{(2)} & \Gamma_c^{(1)}(1-f_c^{(0)}) + \Gamma_c^{(1)} & \Gamma_c^{(2)}(1-f_c^{(2)}) + \Gamma_c^{(2)} & 0 \\ \Gamma_c^{(1)}f_c^{(1)} & -\Gamma_c^{(1)}(1-f_c^{(1)}) - \Gamma_c^{(2)}f_c^{(2,U)} & 0 \\ \Gamma_c^{(2)}f_c^{(2)} & 0 & -\Gamma_c^{(1)}f_c^{(2,U)} - \Gamma_c^{(2)} & \Gamma_c^{(2)}(1-f_c^{(2)}) - \Gamma_c^{(2)} & \Gamma_c^{(1)}(1-f_c^{(2)}) + \Gamma_c^{(2)} \\ 0 & \Gamma_c^{(2)}f_c^{(2,U)} + \Gamma_c^{(2)} & \Gamma_c^{(2)}f_c^{(2,U)} + \Gamma_c^{(2)}f_c^{(2,U)} - \Gamma_c^{(2)}f_c^{(2,U)} + \Gamma_c^{(2$$

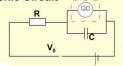
found with numerical integration.

Differential equations

(I-IV)
$$\frac{d}{dt}P = \underline{\underline{M}}(V)P$$

(I) $= \frac{1}{2}\sum_{\nu} \left[\underline{\underline{j}}_{\nu}P + \underline{\underline{j}}_{\nu}P\right]_{\nu}$ (V) $C\frac{d}{dt}V = \frac{V_{0} - V}{R} - \langle I(\underline{P}, V)\rangle$

Electronic Circuit



• external circuit ensures a global coupling

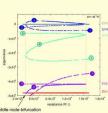
 additional dynamic variable U · capacity C and resistance R are easily changeable parameters

Dynamics of the System (I-V) will be analysed for different parameters R and C.

Current propagator

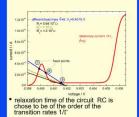
Resistance R

Passive external circuit (R,C positive)



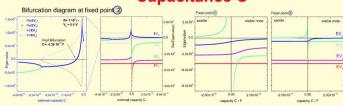
- the saddle point separates the basins of attraction for the two stable nodes
- all eigenvalues are real a Hopf bifurcation is NOT possible because the analytic condition cannot be fullfiled
- where the load line touches the extrema of the stationary current Saddle node bifurcations occure

Stationary solutions



three fixed points for $V_0 \sim 0.4019 \text{ V}$ and $R = 4.10^8 \dots 1.6.10^9 \Omega$

Capacitance C

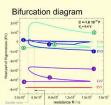


- with negative C the fixpoint on branch 2 undergoes a Hopf Bifurcation
- there is no inverse Hopf bifurcation which ensures a shrinking Limit Cycle Instead the LC collides with the saddle ponit in a Blue Sky Catastroph
- the fixpoints on the positive conductivity branches are saddle points or stable nodes depending on the polarity of C
- negative capacitance, can easily be realized by an active circuit consisting of operation amplifiers [2,3]

Possible Applications

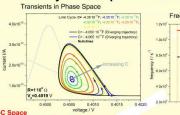
fast switching of the device could be achieved by either varying the external voltage V₂ or the series resistance R

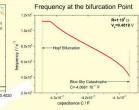
Active External circuit (C negative)



- for an active external circuit the two fixed points on the positive conductivity branches 1 $\,$ & $\,$ 3 are saddle points while the fixpoint in the middle $\,$ 2 $\,$ undergoes a Hopf bifurcation
- eigenvalues are real exept two eigenvalues of the middle branch 2

Blue Sky Catastrophe-Global Bifurcation





the frequency stays constant at the Hopf bifurcation while it goes to zero (infinite period) at the global fomoclinic bifurcation after the LC has touched the saddle point (blue sky catastrophe) there is no stable fixed point in the system.

- Bifurcation diagram in R-C Space
- Saddle node bifurcations at R=4.55 10 $^{8}\Omega$ and R=1.56 10 $^{9}\Omega$

- following the Hoof bifurcation through the parameter space (R,C) one obtains the green line that shows the transition from the stable focus to the LC and an unstable focus in the shaded areas the eigenvalues are all real
- the limit cycle vanishes at the homoclinic bifurcation which is exemplary shown for R appr. 110 $^{\circ}\Omega$ with the violet dots

Summary

References

- [1] Kießlich, G., Wacker, A. and Schöll, Physica B 314, 459-463 (2002) [2] National Semiconductor Application Note 31, February 1978,
- [2] National Semiconductor Application Note 31, February 1976 Op Amp Circuit Collection [3] Martin A. D., Lerch M. L. F., Simmonds P. E., and Eaves L., Appl. Phys. Lett. 64, 1248 (1994) [4] Schöll, E., Amann, A., Rudolf, M. and Unkelbach, Physica B 314, 113-117 (2002)
- 8.0x10⁶ 1.0x10⁹ 1.2x10⁶ 1.4x10⁹ resistance R / Ω Blue Sky Catast

C>0 show that we instabilities caused by a Hopf bifurcation

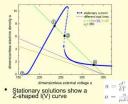
There is a saude position the negative conductivity branch that separates the basins of attraction for the two stable nodes.

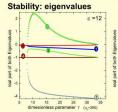
Thus, the resonant tunneling QD structure could be used as a fast switching device

For C<0 a there is a Hopf bifurcation leading to uniform limit cycle oscillations. With increasing absolute value of C the oscillation amplitude increases while its shape transforms from an elliptic to a strongly nonlinear relaxation-type shape. At a certain value of C the limit cycle collides with the saddle-point on the low current branch and disappears. This represents a global homoclinic bifurcation.

Comparing the performance with a conventional double barrier resonant tunneling diode (DBRT) using a quantum well [4] we find that for the N-shape of the QD I(V) no inverse Hopf bifurcation exists but parameter sets whithout stable fixed points.

Comparison to double barrier resonant tunneling diode with quantum well





- - stance $Re^2\rho_0L_xL_y$ RC
- Comparing the performance of both systems some similarities but also some essential differences can be found The Z-shape of the DBRT I(V) curve has a bistability range leading to a inverse Hopf bifurcation. This ensures the existence of at least one stable fixed point.

Acknowledgement

This work was supported by Sfb 555.