

TIME-DELAYED FEEDBACK CONTROL WITH VARIABLE PHASE-DEPENDENT COUPLING

P. Hövel and E. Schöll

Institut für Theoretische Physik, Technische Universität Berlin

Introduction

- Stabilization of unstable steady states by time-delayed feedback
- Analytic solution of characteristic
- equation by Lambert function Influence of phase-dependent coupling
- Domain of control for diagonal and nondiagonal control

Model and analytic results (diagonal coupling)

Generic case of an unstable focus with time-delayed control force (Pyragas control):

Re(A)

$$\frac{d x(t)}{d t} = \lambda x(t) + \omega y(t) - K[x(t) - x(t - \tau)]$$

$$\frac{dy(t)}{dt} = -\omega x(t) + \lambda y(t) - K[y(t) - y(t - \tau)]$$

K: Feedback gain, τ :Time delay, λ , $\omega \in R$, $\lambda > 0$, $\omega \neq 0$

Exponential ansatz: $x(t) \sim \exp(\Lambda t)$, $y(t) \sim \exp(\Lambda t)$

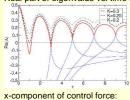
Characteristic equation: $\lambda \pm i \omega = \Lambda + K \left[1 - \exp(-\Lambda \tau) \right]$

Solution of characteristic equation by Lambert function W:

$$\Lambda \tau = W \left(K \tau e^{-(\lambda \pm i\omega)\tau + K\tau} \right) + (\lambda \pm i\omega)\tau - K\tau$$

Domain of control (diagonal coupling)

Real part of eigenvalue vs. time delay: $\lambda = 0.5, \omega = \pi$



Start at uncontrolled eigenvalue $\lambda \pm i \omega$

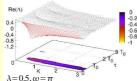
Stabilization if $Re(\Lambda) < 0$

Infinite number of artificially created modes (see case K=0.3)

Current and delayed component in antiphase

Stabilization: Vanishing control force Noninvasiveness

$Re(\Lambda)$ vs. time delay and feedback gain:



Bottom projection for stabilization ($\Lambda < 0$)

Absence of control $(K=0 \text{ or } \tau=0): Re(\Lambda)=\lambda$

Analytic results of the domain of control:

Minimum feedback gain:

$$K_{min} = \frac{\lambda}{2}$$

• No control for multiples of intrinsic period $T_0 = \frac{2\pi}{2\pi}$

Unstable focus with time-delayed control force and phase φ

$$\frac{dx(t)}{dt} = \lambda x(t) + \omega y(t) - K \left[\cos(\varphi) \left[x(t) - x(t-\tau) \right] - \sin(\varphi) \left[y(t) - y(t-\tau) \right] \right]$$

$$\frac{dy(t)}{dt} = -\omega x(t) + \lambda y(t) - K \left[\sin(\varphi) \left[x(t) - x(t-\tau) \right] + \cos(\varphi) \left[y(t) - y(t-\tau) \right] \right]$$

$$\Leftrightarrow \frac{\left|\frac{d \ x(t)}{d \ t}\right|}{\left|\frac{d \ y(t)}{d \ t}\right|} = \left(\begin{matrix} \lambda & \omega \\ -\omega & \lambda \end{matrix}\right) \left(\begin{matrix} x(t) \\ y(t) \end{matrix}\right) - K \left(\begin{matrix} \cos\left(\varphi\right) & -\sin\left(\varphi\right) \\ \sin\left(\varphi\right) & \cos\left(\varphi\right) \end{matrix}\right) \left(\begin{matrix} x(t) - x(t - \tau) \\ y(t) - y(t - \tau) \end{matrix}\right)$$

· Characteristic equation:

$$\lambda \pm i \omega = \Lambda + K e^{\pm i \varphi} \left[1 - e^{-\Lambda \tau} \right]$$

• Solution of characteristic equation by Lambert Function :

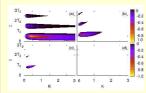
$$\Lambda \tau = W \left[K \tau e^{-(\lambda \pm i \omega)\tau + K \left[\cos(\varphi) \pm i \sin(\varphi) \right] \tau \pm i \varphi} \right] + (\lambda \pm i \omega)\tau - K \tau e^{\pm i \varphi}$$

• Minimum feedback gain:

$$K_{\min}(\varphi) = \frac{\lambda}{\cos(\varphi) - \cos[\varphi + Im(\Lambda \tau)]} \ge \frac{\lambda}{2} = \frac{\lambda}{\cos(\varphi) - \cos[\varphi + Im(\Lambda \tau)]} \Big|_{\varphi = 0, Im(\Lambda \tau) = \pi}$$

Phase-dependent domain of control

Largest real part of eigenvalues vs. time-delay: $\lambda = 0.1, \omega = \pi, K = 0.3$



(a) φ = 0 (b) φ = $\pi/4$ (c) φ = $\pi/2$ (d) φ = $3\pi/4$

For increasing phase:

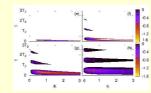
- Smaller control regionsDistortion to larger time delays
- · Eventually no stabilization possible
- For $\varphi = \pi$ no stabilization

 $Re(\Lambda)$ in dependence on time-delay and feedback gain for K=0.3:

Start at uncontrolled eigenvalue

For increasing phase:

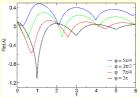
- Decrease of control interval [$Re(\Lambda) < 0$]
- · Increase of maximum real part
- Shift to larger τ of minimum real part



(e) $\varphi = 5\pi/4$ (f) $\varphi = 3\pi/2$ (g) $\varphi = 7\pi/4$ (h) $\varphi = 2\pi$

For phase approaching 2π :

- Larger control regionsDistortion to smaller time delays



For phase approaching 2π :

- Increase of control interval [$Re(\Lambda) < 0$]
- Decrease of maximum real part
- Shift to smaller τ of minimum real part

End at uncontrolled eigenvalue

→ Domain of control 2 π periodic

Conclusion and Outlook

- \bullet 2 π periodic modulation of domain of control for phase-dependent coupling
- Analytic results: Solution of characteristic equation by Lambert function, minimum
- Application to optical systems (Lang-Kobayashi-mode of laser with feedback)

References

- P. Hövel and E. Schöll, Control of unstable steady states by time-delayed feedback methods, Physical Review E 72, 046203 (2005)
- A. Amann, E. Schöll, and W. Just, Some basic remarks on eigenmode expansions of time-delay dynamics, Physica A (2005), in print