Prof. Dr. Holger Stark

http://www.itp.tu-berlin.de/menue/lehre/lv/ss08/pvbs/quant/

Dr. Vasily Zaburdaev

Dipl. Phys. Sebstian Heidenreich Dipl. Phys. Valentin Flunkert

Christin David Christopher Wollin

10. Übungsblatt zur Theoretische Physik II Quantenmechanik

Abgabe: Montag 30.06. bis 12:00 in den Briefkasten

Achtung: Unbedingt den eigenen Namen und Matrikelnr. sowie den Namen des Tutors und das Tutorium angeben. **Der Zettel wird sonst nicht korrigiert!**

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte!

Aufgabe 29 (10 Punkte): Drehimpuls

In der Vorlesung wurde der Drehimpulsoperator $L_i=\varepsilon_{ijk}x_jp_k$ eingeführt und deren Vertauschungsrelationen angegeben. Zeigen Sie die folgenden Relationen!

1.
$$[L_i, x_j] = i\hbar \varepsilon_{ijk} x_k$$

2.
$$[L_i, L_j] = i\hbar \varepsilon_{ijk} L_k$$

3.
$$[\mathbf{L}^2, L_i] = 0$$

4.
$$[L_i, p_i] = i\hbar \varepsilon_{ijk} p_k$$

Aufgabe 30 (10 Punkte): Landau-Niveaus

Ein geladenes Teilchen im Magnetfeld wird durch den Hamiltonoperator

$$\hat{H} = \frac{1}{2\mu} (\hat{\mathbf{p}} - q\hat{\mathbf{A}})^2$$

beschrieben. Hierbei ist \hat{A} das Vektorpotential, welches mit dem Magnetfeld verknüpft ist durch $rot\hat{\mathbf{A}} = \hat{\mathbf{B}}$. Zur Vereinfachung betrachten wir ein homogenes B-Feld in z-Richtung. Ziel der Übung wird es sein die Energieniveaus (Landau-Niveaus) des Teilchens zu berechnen.

- 1. Zerlegen Sie den Hamiltonoperator in seinen parallelen $\hat{H}_{||}$ und senkrechten Anteil \hat{H}_{\perp} bezogen auf die z-Richtung des Magnetfeldes.
- 2. Zeigen Sie $[\hat{H}_{||}, \hat{H}_{\perp}] = 0!$

Für ein homogenes Magnetfeld gilt: ${f A}=-{1\over 2}{f r} imes {f B}$

- 3. Geben Sie das Energiesprektrum für $\hat{H}_{||}$ an.
- 4. Bestimmen Sie das Spektrum von \hat{H}_{\perp} Hinweis:

Verwenden Sie Ihr Wissen über den harmonischen Oszillator.

5. Wie lauten die Landau-Niveaus? Interpretieren Sie diese.

10. Übung TPII SS2008

Aufgabe 31 (10 Punkte): Electrostatic Aharonov-Bohm-effect

In this task an interesting property of the electromagnetic potential in the quantum domain is discussed. The effect is known as the electrostatic Aharonov-Bohm-effect ¹. Consider the following experimental set up.

"....A coherent beam is split into two parts and chopped. Subsequently, each part is allowed to enter a long cylindrical metal tube, the electric potential of which is varied only when the electron wave packets are well inside the tubes. The beams are then recombined" 2

- 1. Let $|\psi(t)\rangle$ be the time evolution of a vector in the Schrödinger-picture subjected to a potential $U(\mathbf{x})$. How is this time evolution changed in the presence of the potential $U(\mathbf{x}) + U_0$? Show, that the probability density of both states are the same.
- 2. Back to the experiment. Choose the electric potential of the lower cylinder to be zero and apply the following time dependent potential U(t) to the upper cylinder:

$$U(t) = (\theta(t - t_1) - \theta(t - t_2))U_0$$

Give the time evolution of each beam. Superpose the wave functions and calculate the probability density. What can you observe? Discuss the classical limit.

¹Y. Aharonov and D. Bohm, Phys. Rev. **115**, (1959), p. 485.

²from G. Matteucci and G. Pozzi Phys. Rev. Lett. **54**, (1985), p. 2469.