http://www.itp.tu-berlin.de/menue/lehre/lv/ss09/wpfv/statphys_i/

5. Übungsblatt zur Statistiche Physik I

Boltzmann's H-theorem and Irreversibility

Abgabe: Mittwoch, 3rd June, bis 16:00 Uhr, Raum E-W 705

Exercise 15 (3 points): Maxwell-Boltzmann distribution

$$H = \int d^3p f(\mathbf{p}, t) \ln f(\mathbf{p}, t)$$

where $f(\mathbf{p},t)$ is arbitrary except for the conditions

$$\int d^3p f(\mathbf{p},t) = n \quad \text{and} \quad \int d^3p \frac{p^2}{2m} f(\mathbf{p},t) = \bar{\epsilon} = \frac{3}{2} n k_{\rm B} T$$

Show that H is minimum when f is the Maxwell-Boltzmann distribution.

Exercise 16 (7 points): Ehrenfest dog-flea model

Suppose we have two dogs and 2R fleas, numbered from 1 to 2R. Initially let all 2R fleas be on one dog. Then draw a number from 1 to 2R and move the flea with that number onto the other dog. Let this process be continued, and let $N_A+N_B=2R$ and $N_A-N_B=2k$, where N_A and N_B are the number of fleas on each dog. If we draw and transfer a flea every τ seconds, then $t=s\tau$, with s the number of draws.

ullet Show that, in one draw, the probability for system to go from state k to $k\pm 1$ is

$$W_{k\pm 1,k} = \frac{R \mp k}{2R}.$$

ullet Show that the probability P(k,s) to find the system in state k after s draws can be described by the Markovian chain

$$P(k,s) = \frac{R+k+1}{2R}P(k+1,s-1) + \frac{R-k+1}{2R}P(k-1,s-1).$$
 (1)

 \bullet Use Eq. (1) to show that the average value of k as a function of s is given by

$$\overline{k}(s) \equiv \sum_{k} kP(k,s) = \left(1 - \frac{1}{R}\right)^{s} \overline{k}(0),$$

where $\overline{k}(0)$ is the initial value. Hence show that, in the large R limit deviations from $\overline{k}=0$ are exponentially damped:

$$\overline{k}(t) \sim \overline{k}(0)e^{-\gamma t}$$
 with $\gamma = (R\tau)^{-1}$. (2)

- Run a computer simulation of the model. Plot $N_A(s)$ and $N_B(s)$ for a typical run with initial conditions $N_A(0)=1$ and $N_B(0)=0$. Compare with the values of $\overline{N_A}(s)$ and $\overline{N_B}(s)$ obtained from Eq. (2) for R=5,20,100.
- Using your simulation, determine the average time taken for the system to return to end up in state k=R given that its initial state is k=0. Plot this average time as a function of R. [Hint: start with small R and work up]. What does this calculation tell us about the 'reversibility paradox' (also known as Zermelo's or Loschmidt's paradox)?

- Internetseite der Veranstaltung: http://www.itp.tu-berlin.de/menue/lehre/lv/ss09/wpfv/statphys i/
- Vorlesung: Montags & Donnerstags, 14:15 bis 15:45, E-W 202
- Literatur:
 - D. A. McQuarrie, Statistical Mechanics
 - L. E. Reichl, A Modern Course in Statistical Mechanics
 - F. Schwabl, Statistische Mechanik
 - M. Kardar, Statistical Physics of Particles & Statistical Physics of Fields
 - M. Plischke and B. Bergersen, Equilibrium Statistical Physics
 - H. B. Callen, Thermodynamics and an Introduction to Thermostatistics
- Übung: Donnerstags, 10:15 bis 11:45, E-W 733
- Scheinkriterien: 50% der Punkte aus den Übungszetteln (Zweierabgabe), aktive Teilnahme an den Tutorien
- Sprechstunden:

Prof. Dr. H. Stark: Fr. 11:30 - 12:30,E-W 709 Dr. C. Emary: Di, 16:00 - 17:00 Uhr, E-W 705