Prof. Dr. A. Knorr Dr. Ermin Malic, Dipl.-Phys. Frank Milde

www.itp.tu-berlin.de/menue/lehre/lv/ss09/wpfv/tfp/

8. Übungsblatt zur Theoretische Festkörperphysik

Abgabe: bis Dienstag 09.06.2009 10:15 Uhr in der Vorlesung.

Aufgabe 14 (5 Punkte): BCS-Theorie des Supraleiters

In der VL wurde der BSC Hamiltonian von Elektronen,die mittels Phononenaustausch attraktiv wechselwirken, hergeleitet:

$$\hat{H}_{BCS} = 2\sum_{k} E(k)\hat{a}_{k}^{\dagger}\hat{a}_{k} - V\sum_{kk'}\hat{a}_{k'}^{\dagger}\hat{a}_{-k'}^{\dagger}\hat{a}_{-k}\hat{a}_{k}$$

Dabei gibt das Vorzeichen vor der Wellenzahl auch gleichzeitig den Spin (\pm) an. Ausgehend von einer gefüllten Fermikugel (neuer Vakuumzustand $|\phi_0\rangle$) wird ein neuer Grundzustand $|g\rangle$, der Cooperpaare enthält, konstruiert:

$$|g\rangle = \prod_{k} (u_k + v_k \hat{a}_k^{\dagger} \hat{a}_{-k}^{\dagger}) |\phi_0\rangle.$$

Aus Normierung folgt $u_k^2 + v_k^2 = 1$. Durch die sogenannte Bogoljubov-Transformation

$$\begin{split} \hat{d}_{k} &= u_{k} \hat{a}_{k} - v_{k} \hat{a}_{-k}^{\dagger}, & \hat{d}_{-k} &= u_{k} \hat{a}_{-k} + v_{k} \hat{a}_{k}^{\dagger} \\ \hat{d}_{k}^{\dagger} &= u_{k} \hat{a}_{k}^{\dagger} - v_{k} \hat{a}_{-k}, & \hat{d}_{-k}^{\dagger} &= u_{k} \hat{a}_{-k}^{\dagger} + v_{k} \hat{a}_{k} \end{split}$$

erhält man neue Teilchen, für die gilt: $\hat{d}_k |g \rangle = 0$ und $\hat{d}_{-k} |g \rangle = 0$

- 1. Zeigen Sie, dass die neuen Operatoren den Antikommutatorregeln von Fermioperatoren unterliegen: $\left[\hat{d}_k,d_{k'}^{\dagger}\right]_+=\left[\hat{d}_{-k},d_{-k'}^{\dagger}\right]_+=\delta_{k,k'}$ und z.B. $\left[\hat{d}_k,\hat{d}_{-k'}^{\dagger}\right]_+=0$
- 2. Stellen Sie die Umkehrtransformation auf $(\hat{a}_{-k} = \dots)$
- 3. Transformieren Sie den Hamiltonian in die Form $\hat{H}=E_0+E_1\hat{H}_1+E_2\hat{H}_2+E_3\hat{H}_3$, wobei E_0 keine Operatoren enthalten sollen, \hat{H}_1 nur $\hat{d}^\dagger\hat{d}$ Operatorpaare, H_2 die $\hat{d}^\dagger\hat{d}^\dagger$, \hat{d} Paare und \hat{H}_3 die verbleibenden Viererterme, die vernachlässigt werden können.
- 4. Zeigen Sie: Variation von E_0 nach v_k liefert:

$$2\varepsilon(k)\frac{u_kv_k}{u_k^2-v_k^2} = V\sum_{k'}u_{k'}v_{k'} \quad (=:\Delta)$$

TIPP: v_k ist verknüpft mit mit u_k , daher ist $\delta E_0 = \left(\frac{\delta E_0}{\delta v_k} - \frac{\delta E_0}{\delta u_k} \frac{v_k}{u_k}\right) \delta v_k = 0$.

- 5. Folgern Sie: $E_2 = 0$.
- 6. Zeigen Sie, dass $E_1=\sum_k \sqrt{\varepsilon^2(k)+\Delta^2}$ gilt. Skizzieren Sie E_1 als Funktion von k und interpretieren Sie.

8. Übung TFP SS 09

Aufgabe 15 (5 Punkte): Operatorrelation

Zeigen Sie, dass für zwei Operatoren \hat{A} und \hat{B} gilt:

$$e^{s(\hat{A}+\hat{B})} = e^{s\hat{A}}T_s \exp\left[\int_0^s ds_1 e^{-s_1\hat{A}}\hat{B}e^{s_1\hat{A}}\right]$$

Nutzen Sie dazu die Analogie zu einen Hamiltonoperator $\hat{H}=\hat{H}_0+\hat{H}_{ww}$ mit freiem \hat{H}_0 (= \hat{A}) und Wechselwirkungsanteil \hat{H}_{ww} (= \hat{B}): Führen Sie zunächst eine Ableitung von $\hat{X}=e^{s(\hat{A}+\hat{B})}$ nach dem Parameter s durch. Das führt zu einem Ausdruck, der in seiner Form der Schrödingergleichung für \hat{X} ähnelt. Eine Transformation ins Dirac-Bild bezüglich der verallgemeinerten Zeit s, formale Lösung und anschliessende Rücktransfomration führen zum gewünschten Ergebnis.