5.5 Fünf Postulate

1. Postulat: Zustand eines quantenmechanischen Systems (qmS)

Alle physikalischen Eigenschaften eines qmS zur Zeit t sind im <u>Zustandsvektor</u> (ZV) $|\psi(t)\rangle$ codiert. Die möglichen Zustände eines qmS bilden einen linearen Raum, den <u>Zustandsraum H</u> (Hilbert-Raum)

2. Postulat: Physikalische Größen

Jede Observable¹⁾ Q wird durch einen im Zustandsraum H wirkenden linearen hermiteschen (selbstadjungierten) Operator $\hat{Q} = \hat{Q}^+$ beschrieben.

Folgen:

- (i) EF von $\hat{Q} = \hat{Q}^+$ bilden VONS, also eine Basis in H
- (ii) EW und quantenmechanischen Erwartungswerte von $\hat{Q} = \hat{Q}^+$ sind reell
- (iii) $\hat{Q}|\psi_n\rangle = q_n|\psi_n\rangle$ bei diskretem Spektrum Dimension von H abzählbar unendlich, bei kontinuierlichem Spektrum Dimension überabzählbar unendlich.

3. Postulat: Messung physikalischer Größen. Messwerte. Zustandsreduktion

Wird eine Observable Q im Zustand $|\psi\rangle$ gemessen, so kann das Messergebnis nur einer der Eigenwerte q_n des zugeordneten Operators \hat{Q} sein.

Unmittelbar nach der Messung im Zustand $|\psi\rangle$ befindet sich das qmS in dem zum EW q_n gehörenden Eigenzustand $|\psi_n\rangle$ von \hat{Q} (entsprechend Eigenwertgleichung $\hat{Q}|\psi_n\rangle = q_n |\psi_n\rangle$).

Bemerkung: Dass die EW von \hat{Q} die möglichen Messwerte von Q sind, ist einer der Gründe, den Observablen hermitesche Operatoren zuzuordnen. Bei diskretem Spektrum von \hat{Q} sind die möglichen Messergebnisse "quantisiert". Die hermiteschen Operatoren spielen also eine zentrale Rolle in der mathematischen Struktur der QM.

 $\label{eq:beachte: Messung and Expression} Beachte: Messung and and Zustand! \qquad \left|\psi\right\rangle \overset{Messung \, von \, Q}{\underset{mit \, Ergebnis \, q_n}{\longrightarrow}} \left|\psi_n\right\rangle \quad \mbox{Zustandsreduktion:}$

Eine (unmittelbar) anschließende zweite Messung trifft das qmS in der Regel bereits in einem anderen Zustand an.

Welcher der Eigenwerte aus dem Spektrum von \hat{Q} wird nun aber tatsächlich gemessen? Die Antwort auf diese Frage ist statistischer Natur und abhängig vom Systemzustand $|\psi\rangle$:

4. Postulat: Messwahrscheinlichkeiten

Wird die Observable Q eines qmS im (normierten) Zustand $|\psi\rangle$ gemessen, so ist die Wahrscheinlichkeit, dass das Ergebnis den (nichtentarteten) EW des dazugehörigen (hermiteschen) Operators \hat{Q} liefert gleich

$$Prob(q = q_n) = |\langle \psi_n | \psi \rangle|^2, \quad \hat{Q} | \psi_n \rangle = q_n | \psi_n \rangle$$
(5.20)

Der Zustand $|\psi\rangle$, in dem die Observable Q gemessen werden soll (er sei bekannt) ist als Superposition der EF $|\psi_n\rangle$ von \hat{Q} darstellbar (da $\hat{Q}=\hat{Q}^+$, bildet $\{|\psi_n\rangle\}$ eine Basis in H)

$$\left|\psi\right\rangle = \sum_{n} c_{n} \left|\psi_{n}\right\rangle, \ c_{n} = \left\langle\psi_{n} \left|\psi\right\rangle.$$

Die Wahrscheinlichkeit, mit der in $|\psi\rangle$ der Wert q_n gemessen wird, ist durch das Betragsquadrat der Entwicklungskoeffizienten $c_n = \langle \psi_n | \psi \rangle$ gegeben.

Ist der Eigenwert q_n entartet, gehören zu ihm mehrere orthonormierte Eigenfunktionen $\left|\psi_n^i\right>$ entsprechend $\hat{Q}\left|\psi_n^i\right>=q_n\left|\psi_n^i\right>$, $i=1,...,g_n$. g_n ist der Grad der Entartung des EW q_n . In diesem Fall gilt

$$Prob(q = q_n) = \sum_{i=1}^{g_n} \left| \left\langle \psi_n^i \middle| \psi \right\rangle \right|^2. \tag{5.21}$$

 $\{ |\psi_n^i \rangle \}$ ist das System orthonormierter Vektoren, die im Eigenraum H_n zum EW q_n von \hat{Q} eine Basis bilden. $|\psi\rangle$ kann nach den $|\psi_n^i\rangle$ entwickelt werden.

Beachte: Für die bedingte Wahrscheinlichkeit Prob $(q = q_m | q = q_n)$ gilt

$$\operatorname{Prob}(q = q_{m} \mid q = q_{n}) = \left| \left\langle \psi_{n} \mid \psi \right\rangle \right|^{2} = \delta_{mn} = \begin{cases} 1, & m = n \\ 0, & m \neq n \end{cases}$$
 (5.22)

→ Eine "zeitnahe" erneute Messung von Q (mit derselben Messapparatur) ergibt mit Sicherheit wieder q_n. Offensichtlich sichert die Zustandsreduktion die Reproduzierbarkeit der Messung: Für eine Theorie, die Anspruch auf die Beschreibung von Experimenten erhebt, ist die Reproduzierbarkeit einer Messung unverzichtbar.

Zwischenfazit:

Sicher ist (\rightarrow 3. Postulat), dass eine Messung von Q im Zustand $|\psi\rangle$ (\rightarrow 1. Postulat) einen Eigenwert q_n aus dem Spektrum des repräsentierenden Operators $\hat{Q}=\hat{Q}^+$ (\rightarrow 2. Postulat) ergibt. Welcher der Eigenwerte tatsächlich gemessen wird, kann nur mit einer Wahrscheinlichkeit $|\langle\psi_n|\psi\rangle|^2$ vorhergesagt werden (\rightarrow 4. Postulat).

5. Postulat: Zeitliche Entwicklung des Zustandes

Die zeitliche Entwicklung des Zustandsvektors $|\psi\rangle$ wird durch

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$
 \rightarrow Schrödinger-Gleichung (5.23)

mit dem (hermiteschen) Hamilton-Operator Ĥ des qmS beschrieben.

Bem.: Gemeint ist die zeitliche Entwicklung des Zustand zwischen zwei Messungen; ansonsten Zustandsreduktion.

(5.23) ist die darstellungsunabhängige Schreibweise der SG

 $\bullet \ Quantenmechanischer \ Erwartungswert \ (qmEWW) \ einer \ Observablen \ Q \ im \ Zustand \ \left|\psi\right>.$

Wir haben

$$\begin{split} &\left\langle Q\right\rangle =\sum_{n}q_{n}=Prob(q=q_{n})=\\ &=\sum_{n}q_{n}\left|\left\langle \psi_{n}\left|\psi\right\rangle \right|^{2}=\sum_{n}q_{n}\left\langle \psi_{n}\left|\psi\right\rangle ^{*}\left\langle \psi_{n}\left|\psi\right\rangle =\sum_{n}q_{n}\left\langle \psi\left|\psi_{n}\right\rangle \!\!\left\langle \psi_{n}\left|\psi\right\rangle =\sum_{n}\left\langle \psi\left|q_{n}\psi_{n}\right\rangle \!\!\left\langle \psi_{n}\left|\psi\right\rangle =\sum_{n}\left\langle \psi\left|\hat{Q}\right|\psi_{n}\right\rangle \!\!\left\langle \psi_{n}\left|\psi\right\rangle =\left\langle \psi\left|\hat{Q}\right|\left(\sum_{n}\left|\psi_{n}\right\rangle \!\!\left\langle \psi_{n}\right|\right)\right|\psi\right\rangle =\left\langle \psi\left|\hat{Q}\right|\psi\right\rangle =\left\langle \hat{Q}\right\rangle _{\left|\psi\right\rangle } \end{split}$$

also

$$\langle \mathbf{Q} \rangle = \langle \psi | \hat{\mathbf{Q}} | \psi \rangle \tag{5.23}$$

Das ist die (darstellungsunabhängige) Verallgemeinerung des uns aus der Schrödinger'schen Wellenmechanik bekannten Ausdrucks

$$\langle \hat{\mathbf{Q}} \rangle = \int d^3 \mathbf{r} \ \psi^*(\underline{\mathbf{r}}) \ \hat{\mathbf{Q}} \ \psi(\underline{\mathbf{r}})$$
 (5.23')

• Projektionsoperator und Messung

Wir definieren den Projektionsoperator/Projektor

Def.:
$$\hat{P}_{|\psi_n\rangle} = |\psi_n\rangle\langle\psi_n|$$
 (5.24)

Dann ist die Wahrscheinlichkeit, mit der q_n gemessen wird

$$Prob(q = q_n) = \left| \left\langle \psi_n \middle| \psi \right\rangle \right|^2 = \left\langle \psi \middle| \psi_n \right\rangle \left\langle \psi_n \middle| \psi \right\rangle = \left\langle \psi \middle| \hat{P}_{|\psi_n\rangle} \middle| \psi \right\rangle,$$

also gleich dem qm Erwartungswert des Projektors im Zustand $|\psi\rangle$.

Da mit Sicherheit einer der EW von \hat{Q} gemessen wird, muss gelten

$$1 = \sum_{n} \text{ Prob}(q = q_n) = \sum_{n} \left\langle \psi \middle| \psi_n \right\rangle \! \left\langle \psi_n \middle| \psi \right\rangle = \left\langle \psi \middle| \psi \right\rangle = 1 \,.$$

Das ist die darstellungsunabhängige Formulierung der Normierungsbedingung, die wir in der Schrödinger'schen Wellenmechanik in der Form

$$\int d^3r \ \psi^*(\underline{r}) \psi(\underline{r}) = 1$$

bereits kennen gelernt haben (→ statistische Interpretation der Wellenfunktion).

Außerdem lässt sich der qm Erwartungswert einer Observablen Q im Zustand $\left|\psi\right\rangle$ in der Form

$$\left\langle \hat{Q}\right\rangle =\sum_{n}q_{n}\left|\left\langle \psi_{n}\left|\psi\right\rangle \right|^{2}\right. \\ =\sum_{n}q_{n}\left\langle \psi_{n}\left|\psi\right\rangle \!\!\left\langle \psi\right|\psi_{n}\right\rangle \\ =\sum_{n}\left\langle \psi_{n}\left|\psi\right\rangle \!\!\left\langle \psi\right|\hat{Q}\left|\psi_{n}\right\rangle \\ \\ \left.\hat{P}_{|\psi\rangle}\right\rangle \\ \\ \left.\hat{Q}\right\rangle =\sum_{n}q_{n}\left|\left\langle \psi_{n}\left|\psi\right\rangle \right|\hat{Q}\left|\psi_{n}\right\rangle \\ \\ \left.\hat{Q}\right\rangle =\sum_{n}q_{n}\left|\left\langle \psi_{n}\left|\psi\right\rangle \right|\hat{Q}\left|\psi\right\rangle \\ \\ \left.\hat{Q}\right\rangle =\sum_{n}q_{n}\left|\left\langle \psi_{n}\left|\psi\right\rangle \right|\hat{Q}\left|\psi\right\rangle$$

darstellen, also

$$\left\langle \hat{Q}\right\rangle =\sum_{n}\left\langle \psi_{n}\left|\,\hat{P}_{\left|\psi\right\rangle }\cdot\,\hat{Q}\,\right|\psi_{n}\right\rangle =Spur\left\{ \,\hat{P}_{\left|\psi\right\rangle }\cdot\,\hat{Q}\right\} \,. \label{eq:power_power_power}$$

- Nachtrag: Hermitesche Konjugation in Dirac-Schreibweise
- (!): Ausdruck aus Konstanten, Kets, Bras, Operatoren
- (?): hermitesch konjugierter Ausdruck
- 1) Man nehme folgende Ersetzungen vor: Konstante $\lambda \to \lambda^*$

$$Ket |\psi\rangle \to \langle\psi|$$

Bra
$$\langle \psi | \rightarrow | \psi \rangle$$

Operatoren

adjungierte Operatoren

2) Man kehre nach diesen Ersetzungen die Reihenfolge der Faktoren um, die Anordnung der Konstanten ist dabei beliebig.

Beweis: Matrizenmultiplikation

■ Beispiele in der Übung

6. Darstellungen der Quantenmechanik

Wiederholung: Linearer Vektorraum Φ .

• Jeder Vektor $\underline{x} \in \Phi$ ist als Linearkombination

$$\underline{x} = \sum_{i=1}^{N} c_{i} \, \underline{e}_{i} , \quad c_{i} = \underline{x} \cdot \underline{e}_{i}, \quad \text{denn } \underline{e}_{i} \cdot \underline{e}_{k} = \delta_{ik} \text{ orthonormiert, } i = 1, ..., N \rightarrow \text{endlich}$$
 (6.1)

der Basisvektoren $\{\underline{e}_i\}$ darstellbar, wobei die Entwicklungskoeffizienten c_i die Skalarprodukte aus \underline{x} und \underline{e}_i sind.

Darstellung des Vektors x zur Basis {ei} heißt der Spaltenvektor

$$\underline{\mathbf{x}} = \begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \\ \vdots \\ \mathbf{c}_N \end{pmatrix} = \begin{pmatrix} (\underline{\mathbf{x}}, \underline{\mathbf{e}}_1) \\ (\underline{\mathbf{x}}, \underline{\mathbf{e}}_2) \\ \vdots \\ (\underline{\mathbf{x}}, \underline{\mathbf{e}}_N) \end{pmatrix}$$
(6.2)

aus den Entwicklungskoeffizienten ci.

• Hilbert-Raum: Entwicklungsatz/Vollständigkeitsrelation in Dirac-Notation

$$\left|\psi\right\rangle = \sum_{n=1}^{\infty} c_{n} \left|n\right\rangle \text{ mit } c_{n} = \left\langle n \left|\psi\right\rangle \text{, denn } \left\langle n \left|n'\right\rangle = \delta_{nn'} \text{ orthonormiert, wenn } \left\{\left|n\right\rangle\right\} \text{ ein VONS (6.1')}$$

Darstellung von $|\psi\rangle$ zur Basis $\{|n\rangle\}$ heißt der Spaltenvektor

$$|\psi\rangle = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \\ \vdots \end{pmatrix} = \begin{pmatrix} \langle 1|\psi\rangle \\ \langle 2|\psi\rangle \\ \vdots \\ \langle n|\psi\rangle \\ \vdots \end{pmatrix}. \tag{6.2'}$$

6.1 Ortsdarstellung der QM. (Basis $\{|\underline{r}\rangle\}$) Schrödinger sche Wellenmechanik

Wir verwenden als Basis das VONS aus den EF $|\underline{\mathbf{r}}'\rangle$ des Ortsoperators $\hat{\underline{\mathbf{r}}}$ definiert durch

$$\underline{\hat{\mathbf{r}}} |\underline{\mathbf{r}'}\rangle = \underline{\mathbf{r}'} |\underline{\mathbf{r}'}\rangle \tag{6.3}$$

 $|\underline{r}'\rangle$ beschreibt den Zustand, in dem das qmT den definierten Ort $\underline{r} = \underline{r}'$ hat. Demzufolge ist \underline{r}' in (6.3) eine kontinuierliche Variable, also überabzählbar unendlich.

Bei Ortsmessung ist die Wahrscheinlichkeit, das qmT am Ort r' zu finden gleich (4. Postulat)

$$Prob(\underline{\mathbf{r}} = \underline{\mathbf{r}}') = \left| \left\langle \underline{\mathbf{r}}' \middle| \psi \right\rangle \right|^2 = \left| \psi(\underline{\mathbf{r}}') \right|^2$$

in Übereinstimmung mit der Born'schen Deutung/statistischen Interpretation der Wellenfunktion. Wir halten also fest. Die Ortsdarstellung der WF lautet

$$\langle \underline{\mathbf{r}'} | \Psi \rangle = \Psi(\underline{\mathbf{r}'}) \ . \tag{6.4}$$

Dabei ist $\psi(\underline{r}')$ der <u>kontinuierliche</u> Spaltenvektor der Entwicklungskoeffizienten des Zustands $|\psi\rangle$ nach den EF des Ortsoperators. Die <u>Vollständigkeit</u> des VONS $\{|\underline{r}\rangle\}$ schreibt sich als $|\psi\rangle = \int d^3r \, \psi(\underline{r}) \, |\underline{r}\rangle$ mit dem <u>kontinuierlichem</u> "Index" \underline{r} und \sum_n ersetzt durch $\int d^3r$ Dann gilt

$$\langle \underline{r}' | \psi \rangle = \int d^3 r \ \psi(\underline{r}) \ \langle \underline{r}' | \underline{r} \rangle^{(2)} = \psi(\underline{r}') = \int d^3 r \ \psi(\underline{r}) \ \delta(\underline{r} - \underline{r}') \ , \ d.h. \ \underline{\langle \underline{r}' | \underline{r} \rangle = \delta(\underline{r} - \underline{r}')} \ . \tag{6.5}$$

Schlussfolgerung: Die Basisvektoren der Ortsdarstellung $|\underline{\mathbf{r}}'\rangle$ zu unterschiedlichen Ortswerten $\underline{\mathbf{r}}'\neq\underline{\mathbf{r}}$ sind orthogonal, aber nicht im üblichen Sinne normiert, weil für $\underline{\mathbf{r}}'=\underline{\mathbf{r}}$ streng genommen divergent. Lassen wir jedoch verallgemeinerten Orthogonalitätsbedingungen der Form (6.5) zu (das bedeutet, wir lassen auch die Dirac-Vektoren als Elemente des Hilbert-Raums zu) auf, dann bilden die EF von $\hat{\mathbf{r}}$ ein VONS.

Beachte:

(i)
$$\hat{1} = \sum_{n=1}^{\infty} |n\rangle\langle n| \rightarrow \hat{1} = \int d^3r |\underline{r}\rangle\langle\underline{r}| \text{ oder } \hat{1} = \int dp |\underline{p}\rangle\langle\underline{p}|$$
 (6.6)

sind Darstellungen des $\hat{1}$ - Operators bei Wahl der VONS $\{|n\rangle\}$ (diskret) und $\{|\underline{r}\rangle\}$ oder $\{|\underline{p}\rangle\}$, kontinuierlich.

(ii) Wir verwenden im Folgenden die sogenannte Spektraldarstellung eines Operators Q

$$\hat{Q} = \sum_{n=1}^{\infty} q_n |n\rangle \langle n| \text{ oder } \hat{\underline{r}} = \int d^3 r \ \underline{r} |\underline{r}\rangle \langle \underline{r}|, \quad \hat{\underline{p}} = \int d^3 r \ \underline{p} |\underline{p}\rangle \langle \underline{p}| \text{ usw.}$$
 (6.7)

 $\hat{Q} \ \text{angewendet auf } \left| m \right\rangle \ \text{ergibt mit (6.7)} \ \hat{Q} \left| m \right\rangle = \sum_{n=1}^{\infty} q_n \left| n \right\rangle \! \left\langle n \middle| m \right\rangle = q_m \left| m \right\rangle, \ \text{also die Eigenwertgleichung für } \hat{Q} \ , \ \text{usw.}$

Ortsdarstellung des Ortsoperators

Die Ortsdarstellung von $|\psi\rangle$ ist $\langle\underline{r}|\psi\rangle = \psi(\underline{r})$. Auch die Operatoren \hat{Q} haben von der jeweils verwendeten Basis abhängige, unterschiedliche Darstellungen im Hilbert-Raum.

Wie lautet die Ortsdarstellung des Ortsoperators $\hat{\underline{r}}$? Da $\hat{\underline{r}}|\psi\rangle = |\hat{\underline{r}}|\psi\rangle$, rechnen wir zur Beantwortung dieser Frage die Ortsdarstellung des Zustandsvektors $|\hat{\underline{r}}|\psi\rangle$ aus. Wir finden

$$\left\langle \underline{r} \middle| \underline{\hat{r}} \psi \right\rangle = \left\langle \underline{r} \middle| \underline{\hat{r}} \middle| \psi \right\rangle = \left\langle \underline{r} \middle| \underbrace{\int d^3 r' \ \underline{r'} \ \middle| \underline{r'} \middle\rangle \left\langle \underline{r'} \middle| \psi \right\rangle}_{\substack{Spektraldarstellung \\ von \underline{\hat{r}}' zur \ Basis \{ \middle| \underline{\hat{r}}' \middle\rangle \}}} \middle| \psi \right\rangle = \int d^3 r' \ \underline{r'} \left\langle \underline{r} \middle| \underline{r'} \middle\rangle \left\langle \underline{r'} \middle| \psi \right\rangle = \int d^3 r' \ \underline{r'} \delta(\underline{r} - \underline{r'}) \overbrace{\left\langle \underline{r'} \middle| \psi \right\rangle}_{\substack{\delta(\underline{r} - \underline{r'})}} = \underline{r} \left\langle \underline{r} \middle| \psi \right\rangle = \underline{r} \psi(\underline{r})$$

oder alternativ

$$\left\langle \underline{r} \middle| \hat{\underline{r}} \psi \right\rangle = \left\langle \underline{r} \middle| \hat{\underline{r}} \middle| \psi \right\rangle \stackrel{\hat{\underline{r}} = \hat{\underline{r}}^*}{=} \left\langle \hat{\underline{r}} \underline{r} \middle| \psi \right\rangle = \underbrace{\underline{r}}_{\text{EW reall}} \left\langle \underline{r} \middle| \psi \right\rangle = \underline{r} \; \psi(\underline{r})$$

also
$$\hat{\underline{r}} \psi(\underline{r}) = \underline{r} \psi(\underline{r})$$
 (6.8)

In Ortsdarstellung ist $\hat{\underline{r}}$ einfach der Produktoperator. Die Wirkung von $\hat{\underline{r}}$ auf $|\psi\rangle$ ist in Ortsdarstellung äquivalent zur Multiplikation mit dem Ort des Teilchens, also mit demjenigen \underline{r} -Wert, der das Argument in $\psi(\underline{r})$ ist.

Wir erkennen sofort, dass $f(\hat{r}) \psi(r) = f(r) \psi(r)$, wenn f in eine Taylor-Reihe entwickelbar ist.

<u>Beachte:</u> Eigenfunktionen des Operators $\hat{\underline{r}}$ zum Eigenwert \underline{r}_0 sind nur die Funktionen, die für $\underline{r} \neq \underline{r}_0$ gleich Null sind (also nicht etwa beliebige $\psi(\underline{r})$, wie man wegen $\hat{\underline{r}}$ $\psi(\underline{r}) = \underline{r}$ $\psi(\underline{r})$ denken könnte), denn jedes Element des kontinuierlichen Spaltenvektors $\psi(\underline{r})$ wird mit einer anderen Zahl multipliziert: $\psi(\underline{r}_0)$ mit \underline{r}_0 , $\psi(\underline{r}')$ mit \underline{r}' usw. Also gilt

$$\underline{\hat{\mathbf{r}}} \ \delta(\underline{\mathbf{r}} - \underline{\mathbf{r}}_0) = \underline{\mathbf{r}}_0 \ \delta(\underline{\mathbf{r}} - \underline{\mathbf{r}}_0) \ . \tag{6.9}$$

Vollständigkeit von $\{|\underline{\mathbf{r}}\rangle\}$ bedeutet

$$\left|\psi\right\rangle = \int d^3 r \; \psi(r) \left|\underline{r}\right\rangle \; \; \text{und gibt} \; \; \left\langle\underline{r}'\right|\psi\right\rangle = \int d^3 r \; \psi(r) \left\langle\underline{r}'\right|\underline{r}\right\rangle \; \; \text{bzw.} \quad \; \psi(\underline{r}') = \int d^3 r \; \psi(\underline{r}) \; \delta(\underline{r}-\underline{r}') \; \; .$$

Der "geläufige" Ausdruck für $\psi(\underline{r}')$ auf der rechten Seite der letzten Zeile ist also nichts anderes, als die Entwicklung einer beliebigen Funktion $\psi(\underline{r}')$ nach den Eigenfunktionen des Ortsoperators, also den δ -Funktionen.

Das Matrixelement des Operators $\hat{\underline{r}}$ ist in Ortsdarstellung (also zur Basis $\{|\underline{r}\rangle\}$) mit Hilfe von $\hat{\underline{r}} = \int d^3r \ \underline{r} |\underline{r}\rangle \langle \underline{r}| \ (6.7) \ \text{leicht zu bestimmen}$

$$\left\langle \underline{r}' \middle| \underline{\hat{r}} \middle| \underline{r}'' \right\rangle = \int d^3r \ \underline{r} \underbrace{\left\langle \underline{r}' \middle| \underline{r} \right\rangle}_{\delta(\underline{r}' - \underline{r})} \underbrace{\left\langle \underline{r} \middle| \underline{r}'' \right\rangle}_{\delta(\underline{r} - \underline{r}'')} \stackrel{\underline{r} = \underline{r}'}{\underset{\underline{r} = \underline{r}''}{=}} \underline{r}' \ \delta(\underline{r}' - \underline{r}'') = \underline{r}'' \delta(\underline{r}' - \underline{r}'')$$

bzw.

$$\langle \underline{\mathbf{r}}' | f(\underline{\hat{\mathbf{r}}}) | \underline{\mathbf{r}}'' \rangle = \int d^3 \mathbf{r} \ f(\underline{\mathbf{r}}) \langle \underline{\mathbf{r}}' | \underline{\mathbf{r}} \rangle \langle \underline{\mathbf{r}} | \underline{\mathbf{r}}'' \rangle = f(\underline{\mathbf{r}}'') \ \delta(\underline{\mathbf{r}}' - \underline{\mathbf{r}}'') = f(\underline{\mathbf{r}}'') \delta(\underline{\mathbf{r}}' - \underline{\mathbf{r}}''). \tag{6.10}$$

Ortsdarstellung des Impulsoperators

Zustände mit definiertem Impuls sind in der Ortsdarstellung ebene de Broglie-Wellen

$$\left\langle \underline{\mathbf{r}} \middle| \underline{\mathbf{p}} \right\rangle = \frac{1}{(2\pi\hbar)^{3/2}} e^{\frac{\mathbf{i}}{\hbar}\underline{\mathbf{p}}\cdot\underline{\mathbf{r}}} . \tag{6.11}$$

Bem.: Das ist eine zusätzliche Annahme, gleichbedeutend mit dem Postulat der Schrödinger-Gleichung im Ortsraum oder der Vertauschungsrelation $[\hat{x}, \hat{p}_x] = i\hbar$.

Auch diese EF sind nicht quadratisch integrabel (können also strenggenommen nicht Zustandsvektoren im H sein), denn

$$\underline{\left\langle \underline{p'} \middle| \underline{p} \right\rangle} = \underline{\left\langle \underline{p'} \middle| \underbrace{\int_{\text{Basiswechsel} (FT)}} \underbrace{\left| \underline{p} \right\rangle} = \int d^3 r \, \underline{\left\langle \underline{p'} \middle| \underline{r} \right\rangle} \left\langle \underline{r} \middle| \underline{p} \right\rangle = \frac{1}{\left(2\pi\hbar\right)^3} \int d^3 r \, e^{\frac{i}{\hbar}(\underline{p} - \underline{p'}) \cdot \underline{r}} = \underbrace{\delta(\underline{p} - \underline{p'})}_{\text{Basiswechsel} (FT)}, \tag{6.5'}$$

wenn wir die Darstellung der δ-Funktion (vgl. 1. Übungsblatt) $\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, e^{ikx}$ verwenden.

Die Ortsdarstellung des Impulsoperators gewinnen wir wieder aus der Projektion von $\underline{\hat{p}}|\psi\rangle = |\underline{\hat{p}}\psi\rangle$ auf $|\underline{r}\rangle$, wobei wir die Spektraldarstellung des Operators $\underline{\hat{p}}$ ausnutzen:

$$\begin{split} & \left\langle \underline{r} \left| \underline{\hat{p}} \psi \right\rangle = \left\langle \underline{r} \right| \underline{\hat{p}} \middle| \psi \right\rangle = \left\langle \underline{r} \middle| \underbrace{\int d^3 p \ \underline{p} \ \middle| \underline{p} \middle\rangle \left\langle \underline{p} \middle|}_{Spektraldarstellung \\ von \underline{\hat{p}} zur \ Basis \{ \middle| \underline{p} \middle\rangle \}} \middle| \psi \right\rangle = \int d^3 p \ \underline{p} \ \left\langle \underline{r} \middle| \underline{p} \right\rangle \left\langle \underline{p} \middle| \psi \right\rangle = \\ & = \int d^3 p \ \underline{p} \ \frac{1}{(2\pi\hbar)^{3/2}} e^{\frac{i}{\hbar} \underline{p} \cdot \underline{r}} \ \left\langle \underline{p} \middle| \psi \right\rangle = \frac{\hbar}{i} \underline{\nabla}_{\underline{r}} \int d^3 p \ \left\langle \underline{r} \middle| \underline{p} \right\rangle \left\langle \underline{p} \middle| \psi \right\rangle = \left\langle \underline{r} \middle| - i\hbar \underline{\nabla}_{\underline{r}} \psi \right\rangle. \end{split}$$

Also gilt in Ortsdarstellung

$$\underline{\hat{\mathbf{p}}} = -\mathrm{i}\hbar\,\underline{\nabla}\tag{6.12}$$

Das "Korrespondenzprinzip" der Schrödinger´schen Wellenmechanik Ersetze klassische Phasenraumvariable $Q(\underline{p},\underline{r},t)$ durch Operator $\hat{Q}=Q(\underline{p},\underline{r},t)=\underline{Q}(-i\hbar\underline{\nabla},\underline{r},t)$ ergibt sich also zwangsläufig aus der axiomatischen Formulierung der QM im Hilbert-Raum bei Verwendung der Basis $\{|\underline{r}\rangle\}$. Analog findet wir

$$\langle \underline{\mathbf{r}} | \mathbf{f}(\hat{\underline{\mathbf{p}}}) | \Psi \rangle = \mathbf{f}(-i\hbar \nabla) \langle \underline{\mathbf{r}} | \Psi \rangle,$$

und für die Matrixelemente des Impulsoperators zur Basis $\{|\underline{r}\rangle\}$ $\langle \underline{r}'|\underline{\hat{p}}|\underline{r}''\rangle = -i\hbar \, \underline{\nabla}_{\underline{r}'} \, \delta(\underline{r}' - \underline{r}'')$ sowie allgemeiner

$$\langle \underline{\mathbf{r}}' | \mathbf{f}(\underline{\hat{\mathbf{p}}}) | \underline{\mathbf{r}}'' \rangle = \frac{1}{(2\pi\hbar)^{3/2}} \widehat{\mathbf{f}}(\underline{\mathbf{r}} - \underline{\mathbf{r}}'), \qquad (6.13)$$

wobei $\widehat{f}(\underline{r}) := \frac{1}{\left(2\pi\hbar\right)^{3/2}} \int d^3p \ e^{\frac{i}{\hbar}\underline{p}\cdot\underline{r}} f(\underline{p})$ die inverse Fourier-Transformierte der Funktion $f(\underline{p})$ ist und wir voraussetzen, dass sich f(p) in eine Taylor-Reihe entwickeln lässt.

• Schrödinger-Gleichung in Ortsdarstellung

Bei der Bewegung eines Teilchens im Potenzial $\mathrm{U}(\underline{r})$ lautet die Hamilton-Funktion

$$H(\underline{p},\underline{r},t) = \frac{\underline{p}^2}{2m} + U(\underline{r},t) \text{ . Nach dem 2. Postulat wird } H(\underline{p},\underline{r},t) \text{ der Operator } \hat{H} = \frac{\underline{\hat{p}}^2}{2m} + U(\underline{\hat{r}},t)$$

zugeordnet. Projezieren wir die darstellungsunabhängige Form der SG i $\hbar \frac{\partial}{\partial t} |\psi\rangle = \hat{H} |\psi\rangle$ auf $|\underline{r}\rangle$ folgt

$$i\hbar\frac{\partial}{\partial t}\left\langle\underline{r}\right|\psi(t)\right\rangle = \frac{1}{2m}\left\langle\underline{r}\right|\underline{\hat{p}}^{2}\left|\psi(t)\right\rangle + \left\langle\underline{r}\right|U(\underline{\hat{r}},t)\left|\psi(t)\right\rangle$$

also die uns bekannte Gleichung der Schrödinger'schen "Wellenmechanik"

$$i\hbar\frac{\partial \psi(\underline{r},t)}{\partial t} = -\frac{\hbar^2}{2m}\underline{\nabla}^2 \,\psi(\underline{r},t) + U(\underline{r},t) \,\psi(\underline{r},t) \;. \label{eq:delta_total_point}$$

6.2 Impulsdarstellung der QM (Darstellung zur Basis $\{|p\rangle\}$)

Wir verwenden als Basis das VONS $\{|\underline{p}\rangle\}$ der Eigenfunktionen des Impulsoperators und gehen genauso vor, wie in Kapitel 6.1 gezeigt (wird ausführlich in der Übung besprochen).

Impulsmessung im Zustand $|\psi\rangle$: Prob ($\underline{p} = \underline{p}'$) = $\left|\left\langle\underline{p}'\right|\psi\right\rangle\right|^2$ wobei

$$\langle \underline{p} | \Psi \rangle := \phi(\underline{p})$$
 (6.2')

eine vollständig gleichwertige Darstellung von $|\psi\rangle$ durch den kontinuierlichen Spaltenvektor $\phi(p)$, die Wellenfunktion im Impulsraum, ist.

Vollständigkeit von
$$\{|\underline{p}\rangle\}$$
: $|\psi\rangle = \int d^3p \, p \, \phi(\underline{p}) \, |\underline{p}\rangle$ (6.2')

Orthogonalität/Normierung:

$$\left\langle \underline{p}' \middle| \psi \right\rangle = \int d^3p \, \phi(\underline{p}) \, \left\langle \underline{p}' \middle| \underline{p} \right\rangle^{(2)} = \phi(\underline{p}') = \int d^3p \, \phi(\underline{p}) \, \delta(\underline{p} - \underline{p}') \, , \, d.h. \quad \left\langle \underline{p}' \middle| \underline{p} \right\rangle = \delta(\underline{p} - \underline{p}') \, . \tag{6.3'}$$

Unter Berücksichtigung von $\langle \underline{p} | \underline{r} \rangle = \frac{1}{(2\pi\hbar)^{3/2}} e^{\frac{i}{\hbar}\underline{p}\cdot\underline{r}}$ haben wir

$$\varphi(\underline{p}) = \left\langle \underline{p} \middle| \psi \right\rangle = \left\langle \underline{p} \middle| \underbrace{\int d^3r \, \left| \underline{r} \right\rangle \left\langle \underline{r} \middle|}_{\widehat{r}} \middle| \psi \right\rangle = \int d^3r \, \left\langle \underline{p} \middle| \underline{r} \right\rangle \underbrace{\left\langle \underline{r} \middle| \psi \right\rangle}_{\psi(r)} = \frac{1}{(2\pi\hbar)^{3/2}} \int d^3r \, \psi(\underline{r}) \, e^{\frac{i}{\hbar} \underline{p} \cdot \underline{r}} \; .$$

<u>Schlussfolgerung</u>: $\phi(p)$ <u>ist die Fourier-Transformierte von</u> $\psi(\underline{r})$ <u>(und umgekehrt)</u>.

• Impulsoperator in p-Darstellung

$$\left\langle \underline{p} \middle| \underline{\hat{p}} \psi \right\rangle = \left\langle \underline{p} \middle| \underline{\hat{p}} \middle| \psi \right\rangle = \left\langle \underline{p} \middle| \underbrace{\int d^3 p' \ \underline{p'} \ \middle| \underline{p'} \middle\rangle \left\langle \underline{p'} \middle|}_{\substack{Spektraldarstellung \\ von \, \hat{p} \, \text{zur Basis} \, \{ \middle| \underline{p} \middle\rangle \}}} \middle| \psi \right\rangle = \int d^3 p' \ \underline{p'} \underbrace{\left\langle \underline{p} \middle| \underline{p'} \right\rangle}_{\delta(\underline{p} - \underline{p'})} \left\langle \underline{p'} \middle| \psi \right\rangle = \underline{p} \ \left\langle \underline{p} \middle| \psi \right\rangle$$

Anwendung von $\hat{\underline{p}}$ auf WF $\phi(\underline{p})$ bedeutet also Multiplikation mit \underline{p} :

$$\underline{\hat{\mathbf{p}}} = \underline{\mathbf{p}} \ . \tag{6.8'}$$

• Ortsoperator in p-Darstellung

Dagegen ist der Ortsoperator in p-Darstellung wegen

$$\left\langle \underline{p} \middle| \underline{\hat{r}} \psi \right\rangle = \int d^3 r \ \underline{r} \left\langle \underline{p} \middle| \underline{r} \right\rangle \left\langle \underline{r} \middle| \psi \right\rangle = \int d^3 r \ \underline{r} \ \frac{1}{\left(2\pi\hbar\right)^{3/2}} e^{-\frac{i}{\hbar}\underline{p}\cdot\underline{r}} \left\langle \underline{p} \middle| \psi \right\rangle = -\frac{\hbar}{i} \nabla_{\underline{p}} \int d^3 r \ \left\langle \underline{p} \middle| \underline{r} \right\rangle \left\langle \underline{r} \middle| \psi \right\rangle = i\hbar \ \underline{\nabla}_{\underline{p}} \left\langle \underline{p} \middle| \psi \right\rangle$$

ein Differentialoperator im p-Raum

$$\underline{\hat{\mathbf{r}}} \phi(\underline{\mathbf{p}}) = i\hbar \underline{\nabla}_{\mathbf{p}} \phi(\underline{\mathbf{p}})$$
, also $\underline{\hat{\mathbf{r}}} = i\hbar \underline{\nabla}_{\mathbf{p}}$ (6.4')

Einschub: Man findet leicht

(i)
$$\langle \underline{p} | F(\underline{\hat{r}}) \psi \rangle = F(i\hbar \underline{\nabla}_{p}) \langle \underline{p} | \psi \rangle = F(i\hbar \underline{\nabla}_{p}) \phi(\underline{p})$$
 oder

(ii)
$$\langle \underline{p}' | \hat{Q} \underline{p} \rangle = \langle \underline{p}' | \hat{Q} | \underline{p} \rangle = \int d^3r \int d^3r' \langle \underline{p}' | \underline{r}' \rangle \langle \underline{r}' | \hat{Q} | \underline{r} \rangle \langle \underline{r} | \underline{p}' \rangle = \int \frac{d^3r \, d^3r'}{(2\pi\hbar)^3} \, e^{\frac{i}{\hbar}(\underline{p}\underline{r} - \underline{p}'\underline{r}')} \langle \underline{r}' | \hat{Q} | \underline{r} \rangle$$

für die Transformation der Matrixelemente eines Operators \hat{Q} aus der Darstellung zur Basis $\{|\underline{p}\rangle\}$ in die Darstellung zur Basis $\{|\underline{r}\rangle\}$ oder

(iii) die Schrödinger-Gleichung in p-Darstellung

$$i\hbar \frac{\partial \phi(\underline{p},t)}{\partial t} = \frac{\underline{p}^2}{2m} \phi(\underline{p},t) + \int \frac{d^3p'}{\left(2\pi\hbar\right)^{3/2}} \widehat{U}(\underline{p}-\underline{p'}) \phi(\underline{p},t). \tag{6.14}$$

Hier bezeichnet \widehat{U} die FT der potenziellen Energie (vgl. 4. Übungsblatt). In Form einer Integralgleichung ergeben sich mitunter Vorteile bei der numerischen Lösung der Schrödinger-Gleichung.