Prof. Dr. Harald Engel

Judith Lehnert, Benjamin Lingnau, Maria Zeitz, Julian Böll, Alexander Ziepke

9. Übungsblatt – Theoretische Physik II: Quantenmechanik

Abgabe: Fr. 19.06.2015 bis 14 Uhr, Briefkasten ER-Gebäude

Aufgabe 22 (3+5=8 Punkte): Larmorpräzession

Ein Wasserstoffatom befinde sich in einem homogenen zeitlich konstanten Magnetfeld ${\bf B}=(B_x,0,0)$. Der Hamiltonoperator des Systems ist gegeben durch $\hat{H}=\hat{H}_0+\hat{H}_1$. Dabei bezeichnet \hat{H}_0 den Hamiltonoperator des freien Wasserstoffatoms. Der Zusatzterm $\hat{H}_1=\frac{-e}{2m_e}{\bf B}\cdot\hat{\bf L}$, beschreibt Wechselwirkung des magnetischen Momentes des Elektrons mit dem Magnetfeld. Dabei ist -e die Elektronenladung und m_e die Elektronenmasse. $\hat{\bf L}$ bezeichnet den Bahndrehimpulsoperator des Elektrons.

- (a) Stellen Sie die Bewegungsgleichungen für die Erwartungswerte $\langle \hat{L}_i \rangle$ der Komponenten des Drehimpulsoperators auf.
 - *Hinweis:* Verwenden Sie die Rotationssymmetrie von \hat{H}_0 . Es gilt also $[\hat{L}_i, \hat{H}_0] = 0$.
- (b) Lösen Sie die Bewegungsgleichungen für den Fall, dass sich das Elektron anfänglich im \hat{L}_z -Eigenzustand $|l\,m\rangle=|1\,1\rangle$ befindet. Interpretieren Sie das Ergebnis.

Hinweis: Die Lösungen und die explizite Form von \hat{H}_0 werden zur Lösung dieser Aufgabe nicht benötigt.

Aufgabe 23 (5 Punkte): Kugelflächenfunktionen

Die Eigenfunktionen der Bahndrehimpulsoperatoren $\hat{\mathbf{L}}^2$ und \hat{L}_z in Ortsdarstellung sind gerade die Kugelflächenfunktionen

$$Y_{lm}(\theta,\varphi) = \sqrt{\frac{2l+1}{4\pi}} \sqrt{\frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\varphi}$$

mit den zugeordneten Legendre-Polynomen

$$P_l^m(x) = \frac{(-1)^m}{2^l l!} (1 - x^2)^{\frac{m}{2}} \frac{\mathrm{d}^{l+m}}{\mathrm{d} x^{l+m}} (x^2 - 1)^l,$$

welche in der Vorlesung eingeführt wurden.

Visualisieren Sie die Aufenthaltswahrscheinlichkeitsdichte der möglichen Eigenfunktionen $|lm\rangle$ des Drehimpulsoperators für $l\in\{0,1\}$. Plotten Sie außerdem die p_x und p_y -Orbitale, die durch

$$p_x = \frac{1}{\sqrt{2}} (|1-1\rangle - |11\rangle)$$
 $p_y = \frac{i}{\sqrt{2}} (|1-1\rangle + |11\rangle)$

gegeben sind.

Hinweis: Benutzen Sie in Mathematica den Befehl SphericalPlot3D. Die Kugelflächenfunktionen $Y_{lm}(\theta,\phi)$ sind durch SphericalHarmonicY[1,m, θ , ϕ] gegeben. Das auf der Webseite der Vorlesung zur Verfügung gestelle Applet kann ebenso verwendet werden.

9. Übung TPII SoSe 15

Aufgabe 24 (3+3+1=7 Punkte): Spin-Rotation

Der Operator

$$\hat{U}(\alpha) = e^{-\frac{i}{\hbar}\underline{\alpha}\cdot\underline{\hat{L}}}$$

dreht einen Zustand um die $\underline{\alpha}$ -Achse um den Winkel $|\underline{\alpha}|$. In dieser Aufgabe soll der Zustand eines Spin- $^1\!\!/_2$ Teilchens um 360° um die x-Achse gedreht werden. Die Spinmatrizen $\hat{S}_i=\frac{\hbar}{2}\,\hat{\sigma}_i$ sind gegeben durch

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

(a) Zeigen Sie, dass sich der Drehoperator um die x-Achse $\hat{U}(\alpha)=e^{-\frac{i}{\hbar}\alpha\hat{S}_x}$ darstellen lässt durch

$$\hat{U}(\alpha) = \begin{pmatrix} \cos(\alpha/2) & -i\sin(\alpha/2) \\ -i\sin(\alpha/2) & \cos(\alpha/2) \end{pmatrix}.$$

Hinweis: Benutzen Sie die Reihendarstellung von \sin , \cos und der e-Funktion und $\hat{\sigma}_x^2 = \mathbb{1}$.

(b) Der Zustand $|\!\uparrow_z\rangle=(1,0)$ wird nun um den Winkel α gedreht

$$|\psi_{\alpha}\rangle = \hat{U}(\alpha) |\uparrow_{z}\rangle.$$

Berechnen Sie die Erwartungswerte von \hat{S}_y und \hat{S}_z als Funktion von $\alpha.$

(c) Um welchen Winkel α muss der Zustand $|\uparrow_z\rangle$ gedreht werden, sodass $|\psi_\alpha\rangle$ wieder $|\uparrow_z\rangle$ ergibt?

Wochenplan						
	Мо	Di	Mi	Do	Fr	
08-10		EW 202 HE	EW 202 HE			
10-12				EW 229 JB	EW 229 MZ	
12-14	EW 114 AZ			EW 229 AZ		
	EW 229 JB					
14-16						
16-18			EW 114 JL			
			EW 229 BL			

Sprechstunden						
HE	Prof. Dr. Harald Engel	Mi 14:30-16	EW 738			
AZ	Alexander Ziepke	Mi 14-15	EW 060			
BL	Benjamin Lingnau	Di 14-15	EW 629			
JB	Julian Böll	Mi 15-16	EW 060			
JL	Judith Lehnert	Mo 15-16	ER 246			
MZ	Maria Zeitz	Do 14-15	EW 702			