Teil II

Statistische Physik

Kapitel 13

Gesamtheiten = Ensembles

13.1 Postulate & Aussagen zur Statistischen Mechanik

Wiederholung aus Kapitel 4.3

makroskopischer Gleichgewichtszustand

- = viele mikroskop. (Quanten-)zustände, die mit makroskopischen Kenngrößen (Bsp.: U, V, N_k , ...) vereinbar sind
- = zugängliche Zustände

Ergodenhypothese = Grundannahme der statistischen Mechanik

Ein abgeschlossenes System wird (in der Meßzeit) in jedem ihm zugänglichen Mikrozustand mit gleicher Wahrscheinlichkeit angetroffen.

Ensemble-Theorie:

- (1) <u>Zeitliches Nacheinander</u> der durchlaufenen Mikrozustände wird in der statistischen Mechanik durch ein <u>Ensemble</u> von Kopien des Einzelsystems ersetzt (= <u>räumliches Nebeneinander</u>).
- (2) Jedes Ensemblemitglied befindet sich genau in einem Mikrozustand: g Mikrozustände = g Ensemblemitglieder

13.2 Mikro- und Makronebenbedingungen

- a) Mikrokanonische Gesamtheit: (s. Kapitel 4.3)
- Charakterisierung:
 vollkommen abgeschlossenes System = keine Ww mit außen
 - \rightarrow Jedes Mitglied der Gesamtheit besitzt gleiches U, V, N_k , ...
- Postulat gleicher a priori Wahrscheinlichkeit: (aus Ergodenhypo.)

Sei $g = g(U, V, N_k)$ die Anzahl zugänglicher Zustände

- → Wahrscheinlichkeit für Zustand s: $P(s) = \frac{1}{g}$ (4.15)
- Grundpostulat der statistischen Mechanik: (von Boltzmann)

Entropie: $S(U, V, N_k) = k_B \ln g(U, V, N_k)$ (4.38)

- thermische Kopplung von System 1 & 2: (s. Kapitel 4.4 & 4.5)
 - Teilsysteme mit "scharfen Energien" $\hat{U}^{(1)}$ & $\hat{U}^{(2)}$ (minimale Schwankungen!)
 - Entropie: $S = S^{(1)} (\hat{U}^{(1)}, V^{(1)}, N_k^{(1)}) + S^{(2)} (\hat{U}^{(2)}, V^{(2)}, N_k^{(2)})$ (im thermodynamischen Limes)

Entropie ist additiv! s. Postulat III, Gl. (1.13)

Zusammenfassung Gesamtheiten

	Mikro-	Makro -	- Bedingungen
Gesamtheit	Gleich für alle Ensemble- mitglieder	Unterschiede der Ensemble- mitglieder	Vorgeschrieben im Gesamt- system
mikro- kanonisch	V,N,U		_
kanonisch	V,N	U_s	$U = \sum_{s} P(s)U_{s}$
groß- kanonisch	V	U_s,N_s	$U = \sum_{s} P(s)U_{s}$ $N = \sum_{s} P(s)N_{s}$ T, μ