Kapitel 21

Quantenstatistik mit Operatoren

Entsprechungen: QM & klassische Mechanik

	Quantenmechanik	klassische Mechanik
Beschreibung der Zustände	Zustandsvektor $ s\rangle$ $\stackrel{\text{z.B.}}{=} n_1^{(\nu)} n_2^{(\nu)} \dots n_k^{(\nu)} \dots\rangle$ im Hilbert-Raum	System-Punkt $(q_1, \ldots q_{3\nu}, p_1, \ldots p_{3\nu})$ im Phasenraum Γ
Meßwerte im Einzelsystem	Operatoren \hat{A} : $\langle A \rangle_s = \langle s \hat{A} s \rangle$	Funktionen $A(\mathbf{q}, \mathbf{p})$ über dem Γ -Raum
Beschreibung statistischer Gesamtheiten	Wahrscheinlichkeits- verteilung $P(s)$ im Hilbert-Raum	Wahrscheinlichkeits- dichte $\rho(\mathbf{q}, \mathbf{p}, t)$ im Phasenraum
Mittelwerte im Ensemble	Zustandsmittelung $\langle A \rangle = \sum_{s} P(s) \langle s \hat{A} s \rangle$	Γ -Raum-Mittelung $\langle A \rangle = \int \rho({f q},{f p},t) A({f q},{f p}) d au$