Prof. Dr. Holger Stark

Johannes Blaschke, Jakob Löber, Torben Winzer, Maria Zeitz

3. Übungsblatt - TPIV: Thermodynamik und statistische Physik

Abgabe: Fr. 13.05.2016 bis 08:30 Uhr, Briefkasten ER-Gebäude

M Aufgabe 7: Spezifische Wärme

a) Ein System mit zwei Freiheitsgraden erfahre Zustandsänderungen, die der Nebenbedingung

$$F(P,V) = \text{const.}$$

unterworfen sind. Zeigen Sie, dass sich die spezifische Wärme c_F als

$$c_F = \left(\frac{\mathrm{d}Q}{\mathrm{d}T}\right)_F = c_V + \frac{\left[\left(\frac{\partial U}{\partial V}\right)_T + P\right]\left(\frac{\partial V}{\partial T}\right)_P}{1 + \frac{F_V}{F_P}\left(\frac{\partial V}{\partial P}\right)_T} \tag{1}$$

darstellen läßt, wobei $F_P=\left(\frac{\partial F}{\partial P}\right)_V$ und $F_V=\left(\frac{\partial F}{\partial V}\right)_P$ ist.

Hinweis: Man verwende zunächst Temperatur und Volumen als unabhängige Variablen.

b) Ein ideales Gas werde polytrop komprimiert, d.h. es gelte die Nebenbedingung

$$PV^{\gamma} = {\rm const.}, \quad 1 < \gamma < \frac{c_P}{c_V}.$$

Berechnen Sie die mit der Umgebung ausgetauschte Wärmemenge $\Delta Q=c_{\mbox{polytrop}}\Delta T$ als Funktion von Anfangs- und Endvolumen.

Hinweis: Beim idealen Gas gilt $(\frac{\partial U}{\partial V})_T=0$.

S Aufgabe 8 (8 Punkte): Magnetisierung

Eine magnetisierbare Nadel befindet sich in einem zu ihrer Achse parallelen Magnetfeld H. Die Magnetisierung M der Nadel hängt von der Temperatur T und vom äußeren Feld H ab. Zur Erhöhung der Magnetisierung um dM leistet das Feld die Arbeit dA = HdM.

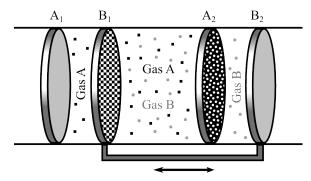
- a) Leiten Sie eine allgemeine Beziehung zwischen den spezifischen Wärmen C_M und C_H (bei festgehaltenem M bzw. H) ab.
- b) Berechnen Sie die adiabatische Suszeptibilität $\chi_{ad}=(\partial M/\partial H)_{ad}$ und setzen Sie diese zur isothermen Suszeptibilität $\chi_T=(\partial M/\partial H)_T$ und zu den spezifischen Wärmen C_M und C_H in Beziehung.

3. Übung TPIV SS 16

S Aufgabe 9 (12 Punkte): Mischungsentropie

In einem zylindrischen Rohr, dass auf konstanter Temperatur T gehalten wird, befinden sich zwei unbewegliche Wände, A_1 und A_2 , die ein Volumen V einschließen. Außdem befinden sich in dem Rohr zwei bewegliche Stempel, B_1 und B_2 , die starr miteinander verbunden sind und ebenfalls das Volumen V einschließen, siehe Skizze.

Der Stempel befinde sich links am Anschlag, so daß die eingeschlossenen Volumina zwischen A_1 und B_1 bzw. zwischen A_2 und B_2 jeweils gleich 0 sind. In diesem Zustand werde der Raum zwischen B_1 und A_2 mit einem Gemisch aus n_A Molen eines idealen und n_B Molen einer anderen idealen Gases befüllt. Die Wand A_2 sei für Moleküle der Sorte B durchlässig und der Stempel B_1 für Moleküle der Sorte A. Ansonsten seien die Wände und Stempel undurchlässig.



- a) Beim quasi-statischen Herausziehen der Stempel bis zum äußeren rechten Anschlag wird das Gasgemisch in die reinen Bestandteile A und B getrennt. Überlegen Sie sich, daß sich bei diesem Vorgang die Entropie nicht ändert, indem Sie sich die innere Energie ΔU und verrichtete mechanische Arbeit ΔW anschauen. Bestimmen Sie die Mischungsentropie S_m des Gasgemisches als Funktion von T, V, n_A und n_B .
- b) Was ändert sich an der Entropie, wenn die beiden Gase aus den gleichen Molekülen bestehen? Läßt sich das obige Gedankenexperiment auch für gleiche Gase durchführen?
- c) Welche Arbeit ist mindestens aufzuwenden, um die beiden Gase isotherm und bei konstantem Gesamtvolumen zu trennen.
- d) In zwei, durch eine Trennwand separierte, Behälter mit den Volumina V_A und V_B befinden sich n_A bzw. n_B Mole zweier verschiedener idealer Gase bei der Temperatur T. Wie groß ist die Gesamtentropie nach Durchmischung, wenn die Trennwand entfernt wird? Was ergibt sich, wenn die beiden Gase vor dem Mischen die gleiche Dichte haben?

Zum Übungsbetrieb: Die Übungsaufgaben teilen sich auf in mündliche M und schriftliche S Aufgaben. Die Bedingung für die Vergabe eines Übungsscheins gliedert sich daher in zwei Teile:

- Es müssen mindestens 50% der schriftlichen Übungspunkte erreicht werden. Die Abgabe erfolgt in Dreiergruppen. Ab dem zweiten Übungsblatt werden Einzel- und Zweierabgaben nicht mehr akzeptiert!
- Vorrechnen: Jeder Student kreuzt vor jeder Übung diejenigen Aufgaben auf einer ausliegenden Liste an, die er oder sie bearbeitet hat. Wer eine Aufgabe angekreuzt hat, ist bereit diese Aufgabe an der Tafel vorzurechnen. Für den mündlichen Teil des Scheinkriteriums müssen am Ende des Semesters in Summe 50% der mündlichen Aufgaben angekreuzt sein.