Pfingstübung zur Allgemeinen Relativitätstheorie II

Abgabe: überhaupt nicht

Die folgende Auflistung umfaßt einen Fragenkatalog zur Allgemeinen Relativitätstheorie – dieser kann zwangsläufig nicht vollständig sein! Wir hoffen jedoch, dass er Denjenigen, die planen die Prüfung abzulegen, eine gewisse Orientierung über die Dinge gibt, die man wissen könnte.

Allen Teilnehmern wünschen wir schöne Pfingsten!

Grundlagen

- Wie verhalten sich Spezielle Relativitätstheorie und Newtonsche Gravitationstheorie zueinander?
- Was besagt das spezielle Relativitätsprinzip?
- Was ist ein Lichtkegel, welche verschiedenen Abstände gibt es?
- Wie sehen die Minkowski-Metrik und die Lorentz-Transformationen aus? Was sind Poincare- und Galilei-Transformationen und welche Symmetrien und Erhaltungssätze gehören dazu?
- Wie können Mechanik und Elektrodynamik in einer geeigneten Weise im Minkowskiraum dargestellt werden (auch Eigenzeit und 4-er Impuls)? Was für Größen treten da auf und was gibts für Lösungen?
- Welche Energie-Impuls-Tensoren sind einem über den Weg gelaufen und was machen diese (ideale Flüssigkeit, EM-Feld), (Energie-Impuls-Bilanz und nicht relativistischer Limes)?
- Welche Rolle spielen beschleunigte Bezugssysteme in der Speziellen Relativitätstheorie und wie werden diese beschrieben?
- Welche verschiedenen Massebegriffe gibt es, und was besagt das Äquivalenzprinzip?

Riemannsche Geometrie und Grundlagen der Gravitationstheorie

- Was ist ein Riemannscher Raum?
- Wie transformieren sich Tensoren im Riemannschen Raum?
- Wie sind Christoffelsymbole definiert und wie transformieren sich diese im Gegensatz zu Tensoren (wiederum Äquivalenzprinzip)?

- Wie ist die kovariante Ableitung definiert?
- Wie sehen die Geodätengleichung und der Paralleltransport aus (auch Fermi-Walker-Transport und Lieableitung)?
- Wie lauten die Definitionen des Krümmungstensors und wie läßt sich das veranschaulichen?
- Welche algebraischen und differenziellen Identitäten erfüllt der Krümmungstensor?
- Wie formuliert man (nicht gravitative) Grundgesetze kovariant?
- Wie vollzieht sich in etwa der Grenzübergang zur Newtonschen Gravitationstheorie?
- Welche Möglichkeiten sehen Sie zur Motivierung der Feldgleichungen?
- Wie lauten die Einsteinschen Feldgleichungen, was sind die auftretenden Größen (Eindeutigkeit etc.)?
- Was ist die Bedeutung der Divergenzfreiheit des Energie-Impuls-Tensors, woraus folgt diese und stellt sie Einschränkungen an den Riemannschen Raum?
- Gibt es in der ART im Allgemeinen Erhaltungsgrößen?
- Was sind Killingvektoren und was haben diese mit Erhaltungsgrößen zu tun?
- Wie kann man die Feldgleichungen aus einem Variationsprinzip ableiten? Welche Bedingungen müssen gefordert werden?
- Wie verhalten sich Variationsprinzip und Feldgleichungen bei Anwesenheit von Materie (metrischer Energie-Impuls-Tensor und Materiefeldgleichungen)?
- Was besagt die Deviationsgleichung (insbesondere ist das auch für Gravitationswellen wichtig)?

Spezielle Lösungen und Effekte

- Wie gelangt man zu den linearisierten Feldgleichungen, wie ist ihr Verhältnis zur vollständigen Theorie? (Dies muss man natürlich auch besonders bei den Graviationswellen wissen!)
- Was beschreibt die Schwarzschildlösung und wie sieht sie aus?
- Wie wird diese Lösung motiviert und wie beschreibt man dann die klassischen Tests?
- Was sind Testkörper?
- Grundkenntnisse über die klassischen Tests der ART (theoretische Beschreibung und experimentelles Vorgehen)?

Gravitationswellen

- Was sind Graviationswellen und welche Eigenschaften haben diese?
- Wie kommt man zu diesen Wellen überhaupt und was gibt es für allgemeine Lösungen?
- Was sind die Eichtransformationen und woher kommen diese?
- Was besagt der Energie-Impuls-Tensor einer Gravitationswelle, woher kommt er, was beschreibt er?
- Warum Monopol-, Dipol-, Quadrupolstrahlung auftreten oder auch nicht?
- Wie misst man Gravitationswellen?

Kosmologie

- Was ist Ziel der Kosmologie?
- Welche Lösungen der Feldgleichungen benutzt man zur kosmologischen Beschreibung, welche Eigenschaften haben diese und welche Probleme lösen Sie und welche erzeugen Sie?
- Unter welchen Annahmen sind diese Gleichungen vollständig, Intergrationsbedingungen, Friedmann-Gleichung?
- Einige kosmologische Modelle?
- Wie beobachtet man in etwa, was und warum?

Quantengravitation

- Was möchte die Quantengravitation überhaupt beschreiben?
- Wie geht die kanonische Formulierung der Allgemeinen Relativitätstheorie von statten, welche zusätzlichen Annahmen muss man machen?
- Worin liegen die besonderen Probleme der kanonischen Formulierung der Allgemeinen Relativitätstheorie (Zwangsgleichungen)?
- Welches sind die Feldvariablen und die anderen Größen?
- Was ist die Wheeler-DeWitt-Gleichung?
- Wie kann man Theorien mit Zwangsgleichungen quantisieren (Dirac-Quantisierung)?

Alles was zuvor vergessen worden ist!...