Prof. Dr. Sabine Klapp Dr. Mohsen Khadem

1. Übungsblatt – Theoretische Physik VI: Kolloidsysteme

Abgabe: Di. 23.04.2019 In der Vorlesung.

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es die Punkte. Die Abgabe soll in Dreiergruppen erfolgen.

Aufgabe 1 (6 Punkte): Ideales Gas

Betrachten Sie das klassische ideale, d.h. wechselwirkungsfreie Gas, bestehend aus N Atomen (hier: Massenpunkte) im Volumen V. Da die genaue Gestalt des "Gefäßes" beim idealen Gas keine Rolle spielt, kann das endliche Volumen z.B. durch einen Kubus der Kantenlänge L realisiert werden.

- (i) Formulieren Sie den Hamiltonian. Hinweis: Die Zwangsbedingung des endlichen Volumens kann durch ein geeignetes Potential $V({\bf r})$ realisiert werden.
- (ii) Berechnen Sie das Phasenvolumen $\Gamma_N(E,V)=rac{1}{h^{3N}N!}\int\limits_{H< E} d{f r}^N d{f p}^N.$
- (iii) Berechnen Sie die Entropie S(E,V,N). Verwenden Sie dabei die Stirling-Formel, um den auftretenden Logarithmus-Term zu vereinfachen.
- (iv) Leiten Sie einen exakten thermodynamischen Ausdruck für die innere Energie des idealen Gases (auch "kalorische Zustandsgleichung" genannt) her.
- (v) Berechnen Sie den Druck P(T,V,N) und leiten Sie damit die dazugehörige thermische Zustandsgleichung des idealen Gases her.

Aufgabe 2 (10 Punkte): Gibbs-Bolgoliubov-Ungleichung

Gegeben sei der Hamiltonian ${\cal H}$ eines klassischen Fluidsystems. Im kanonischen Ensemble ist die Freie Energie für dieses System definiert durch

$$\mathcal{F} = -k_B T \ln Z$$

mit der kanonischen Zustandssumme

$$Z = \iint d\mathbf{r}^N d\mathbf{p}^N \exp(-\beta \mathcal{H}) , \quad \beta = 1/(k_B T).$$

Sei $\mathcal{H} = \mathcal{H}_0 + V$, wobei V das Potential einer *Störung* beschreibt und \mathcal{H}_0 der Hamiltonian des *ungestörten* Systems ist. Die wichtige Gibbs-Bolgoliubov-Ungleichung lautet nun

$$(1) \mathcal{F} \le \mathcal{F}_0 + \langle V \rangle_0.$$

Die Freie Energie ist also stets kleiner oder gleich der Summe $\mathcal{F}_0 + \langle V \rangle_0$, wobei \mathcal{F}_0 die Freie Energie des ungestörten Systems ist und $\langle V \rangle_0$ ist der kanonische Mittelwert von V in Bezug zum Hamiltonian \mathcal{H}_0 .

Beweisen Sie die Gültigkeit der Ungleichung (1), indem Sie folgende Schritte abarbeiten:

(i) Betrachten Sie den Hamiltonian $\mathcal{H}(\lambda)=\mathcal{H}_0+\lambda V$, wobei $\lambda=[0\dots 1]$ ein kontinuierlicher Störparameter ist. Damit lassen sich Zustandssumme $Z=Z(\lambda)$ und Freie Energie $\mathcal{F}=\mathcal{F}(\lambda)$ als Funktionen des Parameters λ ausdrücken.

1. Übung TP VI SS19

- (ii) Bilden Sie die Taylorreihe der Freien Energie in Potenzen von $(\lambda_1 \lambda_0)$, wobei $\lambda_1 = 1$ die eingeschaltete Störung beschreibt und $\lambda_0 = 0$ entsprechend das ungestörte System.
- (iii) Zeigen Sie, dass der in der Reihe auftretende Term linear in $(\lambda_1 \lambda_0)$ sich schreiben lässt als

$$\frac{\partial \mathcal{F}(\lambda)}{\partial \lambda} = \langle V \rangle_0$$

(iv) Im letzten Schritt zeigen Sie, dass in der Reihe auftretende Term proportional zu $(\lambda_1-\lambda_0)^2$ stets negativ ist.

Aufgabe 3 (4 Punkte): Funktionalableitung

Leiten Sie die Euler-Lagrange Gleichung für das folgende Potential her

$$F = \int_{a}^{b} dx \left[\frac{c}{2} (\partial_x \psi)^2 + \frac{a\tau^2}{2} \psi(x)^2 + \frac{d}{2} (\partial_x^2 \psi)^2 \right]$$

mit den Randbedingungen $\psi(a)=\psi_a$, $\psi(b)=\psi_b$, $\partial_x\psi(a)=\psi_a'$ und $\partial_x\psi(b)=\psi_b'$. Nehmen Sie an, dass $\psi(x)$ die stationäre Lösung ist und betrachten Sie das Feld $\psi_\lambda(x)=\psi(x)+\lambda\epsilon(x)$, wobei $\epsilon(x)$ eine Abweichung von der stationären Lösung mit den Randbedingungen $\epsilon(a)=\epsilon(b)=\partial_x\epsilon(a)=\partial_x\epsilon(b)=0$ ist. Bestimmen Sie die Euler-Lagrange Gleichung für das Feld $\psi(x)$ unter der Bedingung, dass $\partial_\lambda F[\psi_\lambda]|_{\lambda=0}=0$ gilt.

Vorlesung: Dienstag 08:15 Uhr – 09:45 Uhr im EW 203

Donnerstag 08:15 Uhr - 09:45 Uhr im EW 203

Tutorium: TBA

Scheinkriterien: Mindestens 50% der Übungspunkte

Regelmäßige und aktive Teilnahme am Tutorium Bearbeitung und Vorstellung eines Projekts