Prof. Dr. Sabine Klapp Dr. Mohsen Khadem

3. Übungsblatt – Theoretische Physik VI: Kolloidsysteme

Abgabe: Di. 07.05.2019 In der Vorlesung.

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es die Punkte. Die Abgabe soll in Dreiergruppen erfolgen.

Aufgabe 6 (6 Punkte): Funktionalableitungen

Für ein Funktional $F[\rho]$ betrachten wir eine Variation $\delta\rho(x)$ der Funktion $\rho(x)$ und taylor-expandieren $F[\rho+\delta\rho]$:

$$F[\rho + \delta \rho] = F[\rho] + \frac{1}{1!} \int \frac{\delta F[\rho]}{\delta \rho(x)} \, \delta \rho(x) \, dx + \frac{1}{2!} \iint \frac{\delta^2 F[\rho]}{\delta \rho(x) \delta \rho(x')} \, \delta \rho(x) \, \delta \rho(x') \, dx \, dx' + \dots$$

Die Koeffizienten $\frac{\delta F[\rho]}{\delta \rho(x)}, \frac{\delta^2 F[\rho]}{\delta \rho(x)\delta \rho(x')}$, usw. sind die Funktionalableitungen von $F[\rho]$. Berechnen Sie durch Identifikation die Ableitungen $\frac{\delta F[\rho]}{\delta \rho(x)}$. Nehmen Sie an, dass die Variation auf dem Rand verschwindet.

a)
$$F[\rho] = \int_a^b \left(\frac{d\rho}{dx}\right)^2 dx'$$

b)
$$F[\rho] = \frac{1}{2} \iint \frac{\rho(x')\rho(x'')}{|x'-x''|} dx' dx''$$

c)
$$F[\rho] = \rho(x')$$

Man kann zeigen, dass sich die bekannten Rechenregeln auf Funktionalableitungen verallgemeinern lassen. Berechnen Sie die Funktionalableitung von

d)
$$F[\rho] = e^{\int_a^b \rho(x')V(x') dx'}$$

Aufgabe 7 (8 Punkte): Korrelationsfunktionen und generierende Funktionale

Betrachten Sie den Vielteilchen-Hamiltonian eines klassisches Fluids, bestehend aus N Teilchen der Masse m:

$$H_N = \sum_{i=1}^N rac{\mathbf{p}_i^2}{2m} + V_{\mathsf{int}}(\mathbf{r}_1, \dots, \mathbf{r}_N) + \sum_{i=1}^N V_{\mathsf{ext}}(\mathbf{r}_i).$$

 $V_{\rm int}$ bezeichnet das Gesamtpotential der Teilchenwechselwirkungen und $V_{\rm ext}$ ist hier ein beliebiges, externes (Einteilchen-)Potential sein.

Das Großkanonische Potential $\Omega = -k_BT \ln Z_{\rm GK}$ ist eine Funktion vom chemischen Potential μ , der Temperatur T und dem Systemvolumen V. Aus der Tatsache, dass Ω zudem ein Funktional von $V_{\rm ext}({\bf r})$ ist, folgt nun:

$$\Omega = \Omega[u(\mathbf{r})], \text{ wobei } u(\mathbf{r}) \equiv \mu - V_{\text{ext}}(\mathbf{r}).$$

Zeigen Sie, dass die erste Funktionalableitung von Ω nach der Funktion $u(\mathbf{r})$ der gemittelten Einteilchen-Dichte $\rho(\mathbf{r})$ entspricht:

$$\frac{\delta\Omega}{\delta u(\mathbf{r})} = -\rho(\mathbf{r}).$$

3. Übung TP VI SS19

Aufgabe 8 (6 Punkte): Barometrische Höhenformel

Ein ideales Gas aus N Atomen im Volumen V befinde sich bei der Temperatur T in einem äußeren Feld $V_{\rm ext}({\bf r})$:

$$H_N = \sum_{i=1}^N rac{\mathbf{p}_i^2}{2m} + \sum_{i=1}^N V_{\mathsf{ext}}(\mathbf{r}_i).$$

- (i) Berechnen Sie die Ortsabhängigkeit der Einteilchendichte $\rho(\mathbf{r})$.
- (ii) $V_{\rm ext}$ sei das Schwerefeld der Erde. Berechnen Sie, wie sich der Gasdruck mit der Höhe über dem Erdboden ändert.

Vorlesung: Dienstag 08:15 Uhr – 09:45 Uhr im EW 203

Donnerstag 08:15 Uhr - 09:45 Uhr im EW 203

Tutorium: Mittwoch 12:00 Uhr – 14:00 Uhr EW731 Scheinkriterien: Mindestens 50% der Übungspunkte

Regelmäßige und aktive Teilnahme am Tutorium Bearbeitung und Vorstellung eines Projekts