Prof. Dr. Sabine Klapp Dr. Mohsen Khadem

6. Übungsblatt – Theoretische Physik VI: Kolloidsysteme

Abgabe: Di. 28.05.2019 In der Vorlesung.

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es die Punkte. Die Abgabe soll in Dreiergruppen erfolgen.

Aufgabe 14 (10 Punkte): Herleitung der Ornstein-Zernike-Gleichung

In der Vorlesung wurde gezeigt, dass das Dichtefunktional im Gleichgewicht $\Omega[\rho_0]$ die Erzeugende von Dichtekorrelationen G ist. Andererseits ist der Wechselwirkungsanteil des Funktionals der freien Energie $F^{ww}[\rho]$ die Erzeugende von direkten Korrelationsfunktionen c.

(i) Folgen Sie den Schritten wie in der Vorlesung und leiten Sie die Ornstein-Zernike-Gleichung her:

$$h(\mathbf{r}_1, \mathbf{r}_2) - c^{(2)}(\mathbf{r}_1, \mathbf{r}_2)|_{
ho_0} = \int d\mathbf{r}_3
ho_0(\mathbf{r}_3) h(\mathbf{r}_1, \mathbf{r}_3) c^{(2)}(\mathbf{r}_3, \mathbf{r}_1)|_{
ho_0}$$

Dabei sei $h(\mathbf{r}_1, \mathbf{r}_2)$ die totale Korrelationsfunktion, die durch $G(\mathbf{r}_1, \mathbf{r}_2) = \rho_0(\mathbf{r}_1)\rho_0(\mathbf{r}_2)h(\mathbf{r}_1, \mathbf{r}_2) + \rho_0(\mathbf{r}_1)\delta(\mathbf{r}_1 - \mathbf{r}_2)$ in Verbindung gesetzt werden kann.

(ii) In einem homogenen System kann eine beliebige Funktion $K(\mathbf{r}_1,\mathbf{r}_2)$ nur effektiv von der Relativposition $\mathbf{r}=\mathbf{r}_1-\mathbf{r}_2$ beider Orte \mathbf{r}_1 und \mathbf{r}_2 abhängen, da Translationsinvarianz gilt. Nutzen Sie die Konsequenz der Translationsinvarianz für $h(\mathbf{r}_1,\mathbf{r}_2)$ und $c^{(2)}(\mathbf{r}_1,\mathbf{r}_2)$ und zeigen Sie, dass die Ornstein-Zernike-Gleichung im Fourierraum lautet

$$\tilde{h}(\mathbf{k}) - \tilde{c}^{(2)}(\mathbf{k}) = \rho_0 \tilde{h}(\mathbf{k}) \tilde{c}^{(2)}(\mathbf{k})$$

(iii) Argumentieren Sie, warum in einem isotropen System die Abhängigkeit von Vektor **k** durch die Abhängigkeit von der Wellenzahl $k = |\mathbf{k}|$ ersetzt werden kann.

Aufgabe 15 (10 Punkte): Maxwell-Konstruktion für die Freie Energie

Die Maxwell-Konstruktion wird u.a. verwendet, um die koexistierenden Gas-/Flüssigphasen für den Phasenübergang 1. Ordnung eines realen Fluids zu finden. In homogenen Systemen geht man oft von der spezifischen Freien Energie $f\equiv F/N$ als Funktion von $\nu\equiv V/N$ aus. Die koexistierenden Phasen lassen sich dann z.B. im P-V-Diagramm mit Hilfe der sog. Doppel-Tangenten-Konstruktion bestimmen. Zeigen Sie, ausgehend von den Gleichgewichtsbedingungen für die Zweiphasen-Koexistenz, dass für die spezifischen Koexistenz-Volumina v_g und v_f die Ableitungen von f nach v_g , v_f gleich sind und dass die Punkte $(v_g, f(v_g))$ und $(v_f, f(v_f))$ auf der selben Tangente an f liegen.

Vorlesung: Dienstag 08:15 Uhr – 09:45 Uhr im EW 203

Donnerstag 08:15 Uhr - 09:45 Uhr im EW 203

Tutorium: Mittwoch 12:00 Uhr – 14:00 Uhr EW731 Scheinkriterien: Mindestens 50% der Übungspunkte

Regelmäßige und aktive Teilnahme am Tutorium Bearbeitung und Vorstellung eines Projekts