Prof. Dr. Holger Stark, Arne Zantop, Josua Grawitter Isaac Tesfaye, Jonah Friederich, Lasse Ermoneit, Philip Knospe

11. Übungsblatt - Mathematische Methoden der Physik

Achtung: Anmeldung bis 28.06.2019 in tuPORT (siehe Rückseite)! Sonst kein Schein!

Termine: M Vorrechnen in den Tutorien 24.06. – 28.06.2019

Bonusblatt

Die Punkte auf diesem Zettel gehen als Bonuspunkte in das mündliche Hausaufgabenkriterium ein.

M Aufgabe 36 (2 Punkte): Rotation von Feldern (mündlich)

Bestimmen Sie die Rotation $\operatorname{rot} \underline{w} = \nabla \times \underline{w}$ in kartesischen Koordinaten von folgenden Vektorfeldern:

(a)

$$\underline{w}(x,y,z) = \begin{pmatrix} yz\cos(xyz) + 2xz \\ xz\cos(xyz) + 2yz^2 \\ xy\cos(xyz) + x^2 + 2y^2z \end{pmatrix}$$

(b)

$$\underline{v}(x, y, z) = \frac{1}{\rho} \underline{e}_{\varphi}$$

 $\textit{Hinweis:} \ \text{Verwenden Sie} \ \underline{e}_{\varphi} = -\sin(\varphi) \, \underline{e}_x + \cos(\varphi) \, \underline{e}_y \ \ \text{und} \ \ \rho = \sqrt{x^2 + y^2}.$

M Aufgabe 37 (2 Punkte): Divergenz und Rotation (mündlich)

Es sei $\phi(\underline{r})$ ein Skalarfeld und $\underline{a}(\underline{r})$ und $\underline{b}(\underline{r})$ Vektorfelder. Zeigen Sie die folgende Identitäten:

(a)

$$\begin{array}{rcl} \nabla \cdot (\phi \, \underline{a}) &=& (\nabla \cdot \underline{a}) \; \phi + \underline{a} \cdot (\nabla \phi \,) \\ \nabla \times (\phi \, \underline{a}) &=& (\nabla \times \underline{a}) \; \phi + (\nabla \phi \,) \times \underline{a} \\ \nabla \cdot (\, \underline{a} \times \underline{b} \,) &=& \underline{b} \cdot (\nabla \times \underline{a}) - \underline{a} \cdot (\nabla \times \underline{b} \,) \end{array}$$

(b)

$$\nabla \times (\nabla \times \underline{a}) = \nabla(\nabla \cdot \underline{a}) - \nabla^2 \underline{a}$$
$$\nabla \times (\nabla \phi) = 0$$

Hinweis: Verwenden Sie den total antisymmetrischen Tensor ε_{ijk} .

Bitte Rückseite beachten!→

11. Übung MMP SoSe19

Sprechzeiten:	Prof. Dr. Holger Stark	Fr	11:30 – 12:30 Uhr	EW 709
	Jonah Friederich	Мо	13:00 – 14:00 Uhr	EW 060
	Arne Zantop	Мо	16:00 – 17:00 Uhr	EW 701
	Josua Grawitter	Мо	16:00 - 17:00 Uhr	EW 701
	Isaac Tesfaye	Mi	15:00 - 16:00 Uhr	EW 060
	Philip Knospe	Do	15:00 - 16:00 Uhr	EW 060
	Lasse Ermoneit	Fr	15:00 - 16:00 Uhr	EW 060
Vorlesung:	 Donnerstag 8:15 Uhr – 9:45 Uhr in EW 201 			
Webseite:	 Details zur Vorlesung, Vorlesungsmitschrift und aktuelle Informationen sowie Sprechzeiten auf der Webseite unter https://www.tu-berlin.de/?203636 			
Klausurkriterien:	 Anmeldung bis 28.06.2019 unter https://tuport.sap.tu-berlin.de/ (Anleitung unter http://pilot.sap.tu-berlin.de/#Materialien) mindestens 50 % der schriftlichen Übungspunkte S mindestens 50 % der mündlichen Übungspunkte M 			
Klausur:	• Freitag, den 05.07.2019, von 08:00 – 10:00 Uhr in H 1005			
Nachklausur:	 Freitag, den 12.07.2019, von 08:00 – 10:00 Uhr in EB 301 Teilnahme nur durch Qualifikation in der Klausur oder 			

Scheinkriterium: • bestandene Klausur

Bemerkung: Die Übungsaufgaben werden nur als dokumentenechte, handschriftliche, gut lesbare Originale akzeptiert. Wir akzeptieren weder Kopien noch elektronische Abgaben. Aufgaben bitte in Gruppen von drei Personen einreichen.

Literatur zur Lehrveranstaltung:

• S. Großmann, *Mathematischer Einführungskurs für die Physik*, Teubner-Verlag, Stuttgart (2000).

Prüfungsunfähigkeit am Klausurtermin

- R. Wüst, Höhere Mathematik für Physiker, de Gruyter, Berlin (1995).
- G. Berendt und C. Weimar, *Mathematik für Physiker*, Bd. 1 und 2, Akademie-Verlag, Berlin (1983).
- M. L. Boas, *Mathematical Methods in the Physical Sciences*, Wiley & Sons, Hoboken (2005).
- G. B. Arfken und H. J. Weber, *Mathematical Methods for Physicists*, Academic Press, Amsterdam (2005).