Prof. Dr. Holger Stark, Arne Zantop, Josua Grawitter Isaac Tesfaye, Jonah Friederich, Lasse Ermoneit, Philip Knospe

2. Übungsblatt – Mathematische Methoden der Physik

Termine: S Abgabe bis Do, 02.05.2019, 8:10 Uhr im Briefkasten am ER-Eingang M Vorrechnen in den Tutorien 22.04. – 26.04.2019

S Aufgabe 4 (12 Punkte): Levi-Civita-Symbol (schriftlich)

Das Levi-Civita-Symbol in drei Dimensionen ist gegeben durch

$$\varepsilon_{ijk} = \begin{cases} +1 & \text{falls } (ijk) = (123) \\ +1 & \text{falls } (ijk) \text{ gerade Permutation von } (123) \\ -1 & \text{falls } (ijk) \text{ ungerade Permutation von } (123) \\ 0 & \text{sonst} \end{cases}$$

Zeigen Sie folgende Relationen

(a)

$$\varepsilon_{ijk}\varepsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}$$

(b)

$$\varepsilon_{ijk}\varepsilon_{ijn} = 2\delta_{kn}$$

(c)

$$\varepsilon_{ijk}\varepsilon_{ijk} = 6$$

Tipp: Setzen Sie in (a) für j und k jeweils konkrete Werte ein und behandeln Sie so alle möglichen Fälle.

S Aufgabe 5 (8 Punkte): Kreuzprodukt (schriftlich)

Seien $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathbb{R}^3$. Dann gilt für die Komponenten des Kreuzproduktes $\mathbf{a} = \mathbf{b} \times \mathbf{c}$ die Beziehung $a_i = \varepsilon_{ijk}b_jc_k$. Zeigen Sie mittels dieser Definition und der Relationen aus Aufg. 4 folgende Identitäten:

(6.1)
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{c}(\mathbf{a} \cdot \mathbf{b})$$

(6.2)
$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$$

(6.3)
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}).$$

Hinweis: Es gilt die Einsteinsche Summenkonvention (über doppelt auftretende Indizes wird von 1 bis 3 summiert).

M Aufgabe 6 (2 Punkte): Distributivgesetz (mündlich)

Seien $a, b, c \in \mathbb{R}^3$. Zeigen Sie die Gültigkeit der Distributivgesetze für das Skalarprodukt und für das Kreuzprodukt:

(a)

$$\mathbf{a}\cdot(\mathbf{b}+\mathbf{c})=\mathbf{a}\cdot\mathbf{b}+\mathbf{a}\cdot\mathbf{c}$$

(b)

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$$

Zeigen Sie zusätzlich die Gültigkeit von Relation (a) graphisch in zwei Dimensionen.

Bitte Rückseite beachten! →

2. Übung MMP SoSe19

M Aufgabe 7 (2 Punkte): Eigenschaften der Spur (mündlich)

Gegeben sind die Matrizen

$$\underline{\underline{A}} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad \underline{\underline{B}} = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

und $s,t \in \mathbb{R}$. Zeigen Sie durch explizites Ausrechnen, dass die folgenden Spureigenschaften gelten:

$$\operatorname{Spur}(s\,\underline{\underline{A}}+t\,\underline{\underline{B}})=s\operatorname{Spur}\underline{\underline{A}}+t\operatorname{Spur}\underline{\underline{B}},$$

$$\mathsf{Spur}(\underline{\underline{A}}\ \underline{\underline{B}}) = \mathsf{Spur}(\underline{\underline{B}}\ \underline{\underline{\underline{A}}}).$$

Konventionen und Notation:

- Vektor \underline{v} mit Komponenten v_i und Basis \underline{e}_i : $\underline{v} = \sum_i v_i \underline{e}_i = v_i \underline{e}_i$
- Die Matrix \underline{A} hat die Einträge A_{ij} .
- Skalarprodukt zwischen Vektoren \underline{v} und \underline{w} : $\underline{v} \cdot \underline{w} = \sum_i v_i w_i = v_i w_i$
- Die Multiplikation einer Matrix $\underline{\underline{A}}$ mit einem Vektor $\underline{\underline{v}}$ ergibt einen Vektor $\underline{\underline{u}}$: $\underline{\underline{u}} = \underline{\underline{A}} \, \underline{\underline{v}} = \sum_{ij} A_{ij} v_j \underline{\underline{e}}_i = A_{ij} v_j \underline{\underline{e}}_i$ bzw. für die Komponenten $u_i = \sum_j A_{ij} v_j = A_{ij} v_j$
- Die Multiplikation zwischen zwei Matrizen $\underline{\underline{A}}$ und $\underline{\underline{B}}$ ergibt die Matrix $\underline{\underline{C}}$: $\underline{\underline{C}} = \underline{\underline{A}} \ \underline{\underline{B}}$ bzw. in Komponentenschreibweise $C_{ij} = A_{ik}B_{kj}$.

Sprechzeiten:	Prof. Dr. Holger Stark	Fr	11:30 - 12:30 Uhr	EW 709
	Jonah Friederich	Мо	13:00 - 14:00 Uhr	EW 060
	Arne Zantop	Мо	16:00 - 17:00 Uhr	EW 701
	Josua Grawitter	Мо	16:00 - 17:00 Uhr	EW 701
	Isaac Tesfaye	Mi	15:00 - 16:00 Uhr	EW 060
	Philip Knospe	Fr	13:00 - 14:00 Uhr	EW 060
	Lasse Ermoneit	Fr	15:00 - 16:00 Uhr	EW 060

Webseite:

Details zur Vorlesung, aktuelle Informationen sowie Sprechzeiten unter https://www.tu-berlin.de/?203636

Klausurkriterien:

- Anmeldung bis 28.06.2019 unter https://tuport.sap.tu-berlin.de/ (Anleitung unter http://pilot.sap.tu-berlin.de/#Materialien)
- mindestens 50 % der schriftlichen Übungspunkte S
- mindestens 50 % der mündlichen Übungspunkte M

Bemerkung: Die Übungsaufgaben werden nur als dokumentenechte, handschriftliche, gut lesbare Originale akzeptiert. Wir akzeptieren weder Kopien noch elektronische Abgaben. Aufgaben bitte in Gruppen von drei Personen einreichen.