Prof. Dr. Holger Stark, Arne Zantop, Josua Grawitter Isaac Tesfaye, Jonah Friederich, Lasse Ermoneit, Philip Knospe

5. Übungsblatt - Mathematische Methoden der Physik

Termine: S Abgabe bis Mittwoch, 22.05.2019, 18 Uhr im Briefkasten am ER-Eingang M Vorrechnen in den Tutorien 13.04. – 17.05.2019

S Aufgabe 15 (20 Punkte): Taylorpolynome und Taylorreihen

Funktionen f(x) lassen sich mit Hilfe der Basis $\{1, x - x_0, (x - x_0)^2, \ldots\}$ in eine Taylorreihe

(16.1)
$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$$

mit den Koeffizienten a_k um den Punkt x_0 entwickeln.

(a) Zeigen Sie, dass die Koeffizienten a_k durch den Ausdruck

$$a_k = \frac{f^{(k)}(x_0)}{k!}, \quad k = 0, 1, 2, \dots$$

gegeben sind, wobei $f^{(k)}(x_0)$ die k-te Ableitung ausgewertet an der Stelle $x=x_0$ bedeutet und $k!=1\cdot 2\cdot 3\cdot \ldots \cdot k$.

Hinweis: Berechnen Sie $f^{(k)}(x_0)$ mit Hilfe von Gleichung (16.1).

(b) Das Taylorpolynom n-ten Grades $f_n(x)$ lautet

$$f_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

und stellt eine Näherung für die Funktion f(x) um den Entwicklungspunkt x_0 dar. Berechnen Sie $\sin_n(x)$ und $\cos_n(x)$ um den Punkt $x_0=0$ bis zur Ordnung n=8. Zeigen Sie, dass Ihr Ergebnis mit

$$\sin_n(x) = \sum_{k=0}^{n/2-1} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \quad \text{und} \quad \cos_n(x) = \sum_{k=0}^{n/2} (-1)^k \frac{x^{2k}}{(2k)!}$$

übereinstimmt.

Anmerkung: Exakt lassen sich sin(x) und cos(x) darstellen durch

(16.2)
$$\sin(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \quad \text{und} \quad \cos(x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} .$$

(c) Plotten Sie $\sin_n(x)$ und $\cos_n(x)$ für alle $n \leq 8$.

Hinweis: Verwenden Sie z.B. das Computerprogramm Mathematica oder plotten Sie online auf wolframalpha.com. Zum Plotten verwenden Sie den Befehl Plot $[f[x], \{x, xmin, xmax\}]$ mit geeigneten Grenzen xmin und xmax.

- (d) Bestimmen Sie die Taylorpolynome folgender Funktionen um den Entwicklungspunkt $x_0=0$ bis zur Ordnung n=2:
 - (i) $f(x) = (1 \pm x)^a$, $a \in \mathbb{R}$

(iii)
$$f(x) = 1/\sqrt{1 \pm x^2}$$

(ii) $f(x) = \ln(1 \pm x)$

(iiii)
$$f(x) = \tan x$$

Bitte Rückseite beachten!---

5. Übung MMP SoSe19

M Aufgabe 16 (2 Punkte): Komplexe Zahlen

(a) Es sind folgende komplexe Zahlen gegeben (mit $i^2 = -1$):

$$z_1 = 3 - 4i$$
, $z_2 = 3i$, $z_3 = 2 + i$

Zeichnen Sie z_1 , z_2 und z_3 in der komplexen Ebene. Berechnen Sie den Betrag von z_1 , z_2 und z_3 und schreiben Sie sie in der Polardarstellung $z=r\mathrm{e}^{\mathrm{i}\phi}$ wobei $r=\sqrt{zz^*}$.

(b) Berechnen Sie die Taylorreihe von $f(x) = e^x$ um die Stelle $x_0 = 0$ und zeigen Sie unter Verwendung der Gleichungen (16.2), dass folgende Beziehung gilt:

$$e^{i\phi} = \cos \phi + i \sin \phi$$

Was ist die konjugiert komplexe Zahl zu $e^{i\phi}$? Welchen Betrag hat $e^{i\phi}$?

M Aufgabe 17 (2 Punkte): Determinanten

Berechnen Sie die Determinanten folgender Matrizen:

$$\underline{\underline{A}} = \begin{pmatrix} 3 & -2 & 3 & -1 \\ 0 & 4 & 0 & -2 \\ -1 & 1 & 0 & 1 \\ 3 & 2 & 0 & 6 \end{pmatrix} \qquad \underline{\underline{B}} = \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix}$$

Hinweis: Es ist einfacher zunächst die Determinante von $\underline{\underline{B}}\underline{\underline{B}}^T$ zu bestimmen.

Sprechzeiten:	Prof. Dr. Holger Stark	Fr	11:30 - 12:30 Uhr	EW 709
•	Jonah Friederich	Мо	13:00 - 14:00 Uhr	EW 060
	Arne Zantop	Мо	16:00 - 17:00 Uhr	EW 701
	Josua Grawitter	Мо	16:00 - 17:00 Uhr	EW 701
	Isaac Tesfaye	Mi	15:00 - 16:00 Uhr	EW 060
	Philip Knospe	Fr	13:00 - 14:00 Uhr	EW 060
	Lasse Ermoneit	Fr	15:00 - 16:00 Uhr	EW 060

Vorlesung: • Donnerstag 8:15 Uhr – 9:45 Uhr in EW 201

Webseite:

• Details zur Vorlesung, Vorlesungsmitschrift und aktuelle Informationen sowie Sprechzeiten auf der Webseite unter https://www.tu-berlin.de/?203636

2

Bemerkung: Die Übungsaufgaben werden nur als dokumentenechte, handschriftliche, gut lesbare Originale akzeptiert. Wir akzeptieren weder Kopien noch elektronische Abgaben. Aufgaben bitte in Gruppen von drei Personen einreichen.