Prof. Dr. Holger Stark, Arne Zantop, Josua Grawitter Isaac Tesfaye, Jonah Friederich, Lasse Ermoneit, Philip Knospe

6. Übungsblatt - Mathematische Methoden der Physik

Termine: S Abgabe bis Mittwoch, 29.05.2019, 18 Uhr im Briefkasten am ER-Eingang M Vorrechnen in den Tutorien 20.05. – 24.05.2019

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte. Bitte die Matrikelnummern auf dem Aufgabenzettel angeben. Die Abgabe soll in Dreiergruppen erfolgen.

S Aufgabe 18 (10 Punkte): Trägheitstensor I (schriftlich)

Wir betrachten einen starren Körper, der aus N fest verbundenen Massepunkten zusammengesetzt ist. Er rotiert mit einer Winkelgeschwindigkeit $\underline{\omega}$, d.h. um die durch die Richtung von $\underline{\omega}$ definierte Achse mit der Winkelgeschwindigkeit $\dot{\varphi} = \omega = |\omega|$. Der Gesamtdrehimpuls ist dann gegeben als

(19.1)
$$\underline{L} = \sum_{i=1}^{N} m_i \underline{r}_i \times (\underline{\omega} \times \underline{r}_i),$$

wobei $\underline{r}_i = (x_i, y_i, z_i)^T$ der Ort des *i*-ten Massepunktes ist. In Analogie zum Impuls $\underline{p} = m\underline{v}$ kann Gleichung (19.1) auch geschrieben werden als

$$(19.2) \underline{L} = \underline{\Theta} \ \underline{\omega}.$$

Hierbei bezeichnet $\underline{\Theta}$ den Trägheitstensor. Zeigen Sie durch den Vergleich der Gleichungen (19.1) und (19.2), dass der Trägheitstensor durch

$$\underline{\underline{\Theta}} = \sum_{i=1}^{N} m_i \left[(\underline{r}_i \cdot \underline{r}_i) \, \underline{\underline{1}} - \underline{r}_i \otimes \underline{r}_i \, \right]$$

gegeben ist, wobei

das in der Vorlesung besprochene dyadische Produkt bezeichnet.

S Aufgabe 19 (10 Punkte): Transformationsverhalten von Tensoren (schriftlich)

Ist $\underline{\underline{T}}$ ein Tensor mit den Komponenten T_{ij} und $\underline{\underline{D}}$ eine orthogonale Transformation zwischen den orthonormalen Basen $\{\underline{e}_1,\ \underline{e}_2,\ \underline{e}_3\}$ und $\{\underline{e}_1',\ \underline{e}_2',\ \underline{e}_3'\}$. Dann gilt:

$$T'_{ij} = \underline{e}'_i \cdot \underline{\underline{T}} \ \underline{e}'_j = T_{kl} D_{ik} D_{jl},$$

mit $D_{ij} = \underline{e}'_i \cdot \underline{e}_j$. Zeigen Sie, dass außerdem gilt:

$$T_{ij} = (\underline{D}^T)_{ik}(\underline{D}^T)_{jl}T'_{kl}.$$

Hinweis: Nutzen Sie, dass in beiden Basen nach Einstein'scher Summenkonvention $\underline{e}_k \otimes \underline{e}_k = \underline{\underline{\mathbb{1}}}$ gilt.

M Aufgabe 20 (3 Punkte): Trägheitstensor II (mündlich)

Ein starrer Körper bestehe aus vier miteinander verbundenen Kugeln der Masse m, die als Punktmassen an den Positionen

$$\begin{split} \underline{r}_1 &= \frac{1}{\sqrt{2}} (\alpha \underline{e}_1 - \alpha \underline{e}_2), \\ \underline{r}_3 &= \frac{1}{\sqrt{2}} \big[(1 - \alpha) \underline{e}_1 + (1 - \alpha) \underline{e}_2 \big] \quad \text{und} \quad \underline{r}_4 = -\frac{1}{\sqrt{2}} \big[(1 - \alpha) \underline{e}_1 + (1 - \alpha) \underline{e}_2 \big], \end{split}$$

angesehen werden können. Die Massen der Verbindungsstücke können vernachlässigt werden.

Bitte Rückseite beachten!---

- 6. Übung MMP SoSe19
 - (a) Bestimmen Sie die Komponenten des Trägheitstensors.
 - (b) Betrachten Sie nun folgende Winkelgeschwindigkeiten:

$$\underline{\omega}_1 = \underline{e}_1 + \underline{e}_2 + \underline{e}_3, \qquad \quad \underline{\omega}_2 = \frac{1}{\sqrt{2}}(\underline{e}_1 + \underline{e}_2) \qquad \quad \text{und} \qquad \quad \underline{\omega}_3 = \underline{e}_1 + \underline{e}_3.$$

Für welche dieser Winkelgeschwindigkeiten liegt $\underline{\omega}$ parallel zum Drehimpuls $\underline{L} = \underline{\Theta}\,\underline{\omega}$?

- (c) (I) Für welche Werte von α wird der Trägheitstensor diagonal?
 - (II) Der starre Körper sei nun in der \underline{e}_1 - \underline{e}_2 -Ebene um $\pi/4$ gedreht. Die Vektoren \underline{r}_i schreiben sich nach der Drehung als:

$$\underline{r}'_1 = \alpha \underline{e}_1,$$
 $\underline{r}'_2 = -\alpha \underline{e}_1,$ $\underline{r}'_3 = (1 - \alpha)\underline{e}_2,$ $\underline{r}'_4 = -(1 - \alpha)\underline{e}_2$

Bestimmen Sie erneut alle Komponenten des Trägheitstensors. Setzen Sie für α den in (c)(I) bestimmten Wert ein. Was beobachten Sie?

M Aufgabe 21 (1 Punkte): Eigenwertproblem (mündlich)

Gegeben sei die Matrix

Webseite:

$$\underline{\underline{A}} = \left(\begin{array}{cc} 1 & 0 \\ 8 & 2 \end{array}\right)$$

(a) Bestimmen Sie mit Hilfe des charakteristischen Polynoms

$$\chi(\lambda) = \det\left[\underline{\underline{A}} - \lambda\underline{\underline{1}}\right]$$

die Eigenwerte λ_1,λ_2 und die Eigenvektoren der Matrix.

(b) Berechnen Sie Spur und Determinante der Matrix. Sehen Sie einen Zusammenhang zu den Eigenwerten?

Sprechzeiten:	Prof. Dr. Holger Stark	Fr	11:30 - 12:30 Uhr	EW 709
•	Jonah Friederich	Мо	13:00 - 14:00 Uhr	EW 060
	Arne Zantop	Мо	16:00 - 17:00 Uhr	EW 701
	Josua Grawitter	Мо	16:00 - 17:00 Uhr	EW 701
	Isaac Tesfaye	Mi	15:00 - 16:00 Uhr	EW 060
	Philip Knospe	Do	15:00 - 16:00 Uhr	EW 060
	Lasse Ermoneit	Fr	15:00 - 16:00 Uhr	EW 060
Vorlesung:	• Donnerstag 8:15 U	hr – 9	:45 Uhr in EW 201	

 Details zur Vorlesung, Vorlesungsmitschrift und aktuelle Informationen sowie Sprechzeiten auf der Webseite unter https://www.tu-berlin.de/?203636

Bemerkung: Die Übungsaufgaben werden nur als dokumentenechte, handschriftliche, gut lesbare Originale akzeptiert. Wir akzeptieren weder Kopien noch elektronische Abgaben. Aufgaben bitte in Gruppen von drei Personen einreichen.