Prof. Dr. Kathy Lüdge Dr. Alexander Carmele

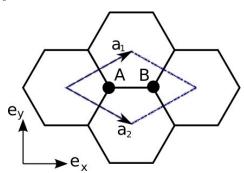
1. Übungsblatt – Theoretische Festkörperphysik I,II

Abgabe: Mo. 29.04.2019 zum Vorlesungsbeginn

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in Dreiergruppen erfolgen.

Aufgabe 1 (4 Punkte): Reziprokes Gitter

Der Zusammenhang zwischen den Basisvektoren eines allgemeinen Bravais-Gitters $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ und den Basisvektoren des reziproken Gitters $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ ist durch


$$\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3} \text{ et cyc.}$$

gegeben.

i) Zeigen Sie, dass das Volumen der primitiven Elementarzelle des reziproken Gitters gleich $(2\pi)^3/V$ ist, wobei V das Volumen der primitiven Elementarzelle ist. ii) Beweisen Sie, dass das reziproke Gitter eines reziproken Gitters wieder das ursprüngliche, reale Gitter ist.

Aufgabe 2 (6 Punkte): Hexagonales Gitter von Graphen

Betrachten Sie das skizzierte Kristallgitter von Graphen. Es handelt sich um ein Honigwabengitter mit dem Bindungsabstand $a_0 \approx 0.142$ nm zwischen zwei Kohlenstoff-Atomen.

i) Geben Sie mit Hilfe der Einheitsvektoren \mathbf{e}_x und \mathbf{e}_y die beiden Translationsvektoren der Elementarzelle \mathbf{a}_1 und \mathbf{a}_2 an. ii) Schreiben Sie die Positionen der zwei Atome A und B innerhalb der Elementarzelle als Funktion von \mathbf{a}_1 und \mathbf{a}_2 . iii) Bestimmen Sie die beiden reziproken Gittervektoren \mathbf{b}_1 und \mathbf{b}_2 und konstruieren Sie daraus das reziproke Gitter und die erste Brillioun-Zone.

Aufgabe 3 (10 Punkte): Schwingungen eines eindimensionalen Kristalls

Ein eindimensionaler Kristall sei durch ein Gitter mit Basisvektor $\mathbf{a}=a\mathbf{e}_x$ (a: Gitterkonstante) und eine zweiatomige Basis gegeben, wobei letztere aus einem Atom der Masse M_1 am Ort $\mathbf{s}_1=\mathbf{0}$ und einem Atom der Masse M_2 am Ort $\mathbf{s}_2=\frac{a}{2}\mathbf{e}_x$ bestehe. Jedes Atom sei mit seinen zwei nächsten Nachbarn jeweils durch eine Kraftkonstante C verbunden.

- i) Leiten Sie im Rahmen dieses klassischen Modells die Dispersionsrelation $\omega(k)$ der Normalschwingungen her. Skizzieren Sie $\omega(k)$ und diskutieren Sie die möglichen Schwingungsformen.
- ii) Für $M_1=M_2$ gebe man Dispersionsrelation, Gruppengeschwindigkeit $\frac{d\omega(k)}{dk}$ und Phasengeschwindigkeit $\frac{\omega(k)}{k}$ an. Interpretieren Sie die Grenzfälle $k\to 0$ und $k\to \pm \frac{\pi}{a}$ physikalisch.
- iii) Für den Fall $M_1=M_2$ kann man den Kristall auch durch ein Gitter mit der halben Gitterkonstante $\frac{a}{2}$ und einer einatomigen Basis, gegeben durch ein Atom der Masse M_1 am Ort $\mathbf{s}_1=\mathbf{0}$, beschreiben. Leiten Sie für diesen Fall analog zu 3(i) die Dispersionrelation $\omega(k)$ her. Warum erhält man im Gegensatz zu 3(ii) nur einen Dispersionszweig? Ist das ein Widerspruch?

Bitte Rückseite beachten!---

1. Übung TFP SS19

Vorlesung: • Montags 10–12 Uhr im EW 202

• Mittwochs 10-12 Uhr im EW 202

Übungen: • Mi 16−18 Uhr im EW 229

Scheinkriterien: • Mindestens 60% der Übungspunkte

• Regelmäßige und aktive Teilnahme in den Übungen

Literatur zur Lehrveranstaltung:

• Ashcroft, Mermin, Festkörperphysik (Oldenbourg)

• Kittel, Quantentheorie der Festkörper (Oldenbourg)

• Czycholl, Theoretische Festkörperphysik (Springer)

• Ibach, Lüth, Festkörperphysik (Springer)

• Jäger, Valenta, Festkörpertheorie (Wiley)

• U. Rössler, Solid State Theory (Springer)

• Haug, Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific)

• Haken, Quantenfeldtheorie des Festkörpers (Teubner)

• Scherz, Quantenmechanik (Teubner)

Sprechzeiten: Name Tag Zeit Raum
Prof. Dr. K. Lüdge Mi 13-14 Uhr EW 741
Dr. A. Carmele Di 11-12 Uhr EW 704

Hinweise:

Die Übungsblätter werden in der Regel am Montag in der Vorlesung ausgegeben. Die Abgabe erfolgt dann 14 Tage später Montags zu Vorlesungsbeginn.