Prof. Dr. Kathy Lüdge Dr. Alexander Carmele

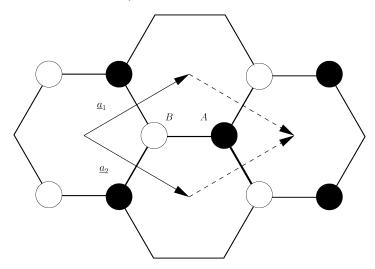
6. Übungsblatt – Theoretische Festkörperphysik I,II

Abgabe: Mo. 03.06.2019 zum Vorlesungsbeginn

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in Dreiergruppen erfolgen.

Aufgabe 10 (20 Punkte): Bandstruktur von Graphen

1. Konstruieren Sie zunächst aus der Elementarzelle von Graphen (eine einzelne Lage Graphit) die erste Brillouin-Zone. Die Graphen-Elementarzelle wird von den Basisvektoren \vec{a}_1 und \vec{a}_2



aufgespannt und enthält zwei Kohlenstoffatome A (am Ort $\frac{2}{3}(\vec{a}_1 + \vec{a}_2)$) und B (am Ort $\frac{1}{3}(\vec{a}_1 + \vec{a}_2)$). Dabei ist

$$\vec{a}_1 = \frac{3a_0}{2}\vec{e}_x + \frac{\sqrt{3}a_0}{2}\vec{e}_y \qquad , \qquad \vec{a}_2 = \frac{3a_0}{2}\vec{e}_x - \frac{\sqrt{3}a_0}{2}\vec{e}_y \qquad \text{und} \qquad \vec{a}_3 = c\vec{e}_z$$

mit $|a_1|=|a_2|=0.2461$ nm und folglich $\measuredangle(\vec{a}_1,\vec{a}_2)=60^\circ$. Wie groß ist der Abstand zwischen zwei Kohlenstoffatomen? Hier entspricht c der Länge der Einheitszelle in z-Richtung, was für die Bandstrukturrechnung aber nicht weiter relevant ist, da wir Graphen modellieren, indem wir annehmen, dass verschiedene Graphenlagen im Graphit nicht miteinander koppeln.

- 2. Um die Bandstruktur zu berechnen, stellen Sie zunächst die Matrix H_{ij} des Hamilton-operators bezüglich der Atomorbitalfunktionen auf: $\langle \psi | H | \psi \rangle = E \langle \psi | \psi \rangle$. Der Ansatz der Wellenfunktion lautet $|\psi\rangle = c_A | A \rangle + c_B | B \rangle$. Beachten Sie, dass $|A\rangle, |B\rangle$ im Allgemeinen kein Orthonormalsystem bilden. Lösen Sie das Eigenwertproblem. Werten Sie nun die internen Summen nur über die nächsten Nachbarn der Graphen-Elementarzelle (Nächste-Nachbar-Näherung) aus. Das heißt konkret, dass nur der Überlapp des p_z -Orbitals eines Kohlenstoffatomes A(B) mit sich selbst A(B) und zwischen sich und dem nächsten benachbarten Atomen B(A) als relevant betrachtet wird. Benutzen Sie die Abkürzungen: $\varepsilon_{2p_z} \equiv \langle \varphi_A(\vec{r}-\vec{R}_A) | H | \varphi_A(\vec{r}-\vec{R}_A) \rangle$, $\gamma_0 \equiv \langle \varphi_A(\vec{r}-\vec{R}_A^0) | H | \varphi_B(\vec{r}-\vec{R}_B^i) \rangle$ und $S_0 \equiv \langle \varphi_A(\vec{r}-\vec{R}_A) | \varphi_B(\vec{r}-\vec{R}_B) \rangle$
- 3. Bestimmen Sie nun die \vec{k} -abhängigen Energieeigenwerte $\varepsilon(\vec{k})$.
- 4. Plotten Sie die Bandstruktur mit Hilfe eines Plotprogramms (bspw. Gnuplot oder Mathematica). Setzen Sie dazu als Parameter für den Überlapp von $\varepsilon_{2p_z}=0$ eV, $\gamma_0=-2.84$ eV und $S_0=0.07$.