Prof. Dr. Tobias Brandes Dipl. Phys. Valentin Flunkert Malte Langhoff, Miriam Wegert, Maria Richter, David Rosin

2. Übungsblatt zur Theoretische Physik I Mechanik

Abgabe: Montag 3.11. bis 11:00 in den Briefkasten

Unbedingt den eigenen Namen und Matrikelnr. sowie den Namen des Tutors und das Tutorium angeben. **Der Zettel wird sonst nicht korrigiert!** Es werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte.

Aufgabe 5 (15 Punkte): Periheldrehung

Auf dem Weg von Perihel zu Perihel ändert sich der Perihelwinkel ϕ um

$$\Delta \phi = 2 \int_{r_{min}}^{r_{max}} \frac{L/r^2}{\sqrt{2m[E - V(r)] - L^2/r^2}} dr$$
 (1)

$$\stackrel{(*)}{=} -2\sqrt{2m}\frac{\partial}{\partial L} \int_{r}^{r_{max}} \sqrt{E - \frac{L^2}{2mr^2} - V(r)} dr. \tag{2}$$

- 1. Zeigen Sie, dass das Gleichheitszeichen (*) gilt.
- 2. Eine Änderung des Potentials $V(r)=-\alpha/r$ um die kleine Grösse $\delta V(r)$ hat zur Folge, dass die Bahn bei finiter Bewegung nicht mehr geschlossen bleibt und sich das Perihel der Bahn bei jedem Umlauf um den kleinen Winkel $\delta \phi$ verschiebt.

Zeigen Sie, dass die Winkeländerung $\delta\phi$ für das Potential $V(r)=-\alpha/r+\delta V(r)$ in erster Näherung gegeben ist durch

$$\delta\phi = \Delta\phi - 2\pi \approx 2m \frac{\partial}{\partial L} \left[\frac{1}{L} \int_0^{\pi} r^2 \delta V(r) \, d\phi \right],$$

wobei $r=r(\phi)$ die ungestörte Lösung ist. Dazu:

- (a) Linearisieren Sie den Integranden von (2) in δV . Tipp: Welches $\Delta \phi$ erhält man für $\delta V=0$?
- (b) Zeigen Sie, dass sich die Wurzel in (2) als $\sqrt{m/2} \dot{r}$ schreiben lässt. (siehe VL).
- (c) Benutzen Sie außerdem $dr/\dot{r}=d\phi/\dot{\phi}$ und $\dot{\phi}=L/mr^2$.
- 3. Die erste relativistische Korrektur zum 1/r-Gravitationsgesetz ist gegeben durch $\delta V(r) = -\frac{\gamma}{r^3}$. Zeigen Sie, dass für diese Korrektur $\delta \phi = 6\pi\gamma/\alpha p^2$ gilt. Tipp: Verwenden Sie die Ellipsengleichung $r(\phi) = p/(1+\varepsilon\cos\phi)$ und $p = L^2/m\alpha$.

Aufgabe 6 (10 Punkte): Gravitationsfeld einer Kugel

Die Kraft ${\bf F}$ auf eine Testmasse m im Feld einer Masse M (mit Massendichte $\rho({\bf r})$) ist gegeben durch

$$\mathbf{F}(\mathbf{r}) = m\mathbf{g}(\mathbf{r})$$
 mit $\operatorname{div} \mathbf{g}(\mathbf{r}) = -4\pi G \rho(\mathbf{r})$.

Benutzen Sie den Satz von Gauß, um $\mathbf{g}(\mathbf{r})$ für eine Kugel (Radius R) mit homogener Dichte ρ_0 zu bestimmen. Machen Sie dazu den Ansatz $\mathbf{g}(\mathbf{r}) = g(r)\mathbf{e}_r$ (Warum geht das?) und Integrieren Sie über eine Kugel mit Radius r_0 .

Tipp: Machen Sie eine Fallunterscheidung für $r_0 \leq R$.

2. Übung TPI WS08/09

Aufgabe 7 (15 Punkte): Masse auf Kurve

Eine Perle (Masse m) gleite reibungsfrei (in 2 Dimensionen) auf einer Kurve, die durch die Gleichung y=f(x) beschrieben wird. Von außen wirke die Gravitationskraft ${\bf F}=-mg\,{\bf e}_y$. Die Bewegungsgleichung des Massepunktes lautet

$$\ddot{x}(1+f'^2) + \dot{x}^2 f' f'' + q f' = 0.$$

1. Leiten Sie die Bewegungsgleichung des Massenpunktes mit der Methode der Lagrange'schen Multiplikatoren (Lagrangegleichung 1. Art) her. Wie lautet die Bewegungsgleichung für den Fall einer schiefen Ebene $f(x) = -x \tan \alpha$? Zeigen Sie, dass die Zwangskraft in diesem Fall gegeben ist durch

$$\mathbf{Z} = mg \cos \alpha \ (\sin \alpha, \cos \alpha).$$

- 2. Berechnen Sie für das allgemeine Perlenproblem die kinetische Energie T und die potentielle Energie V als Funktion von x und \dot{x} und zeigen Sie, dass die Gesamtenergie erhalten ist.
- 3. Stellen Sie die Lagrange-Funktion auf und leiten Sie die Bewegungsgleichung im Lagrange-II-Formalismus her.