Technische Universität Berlin Institut für Theoretische Physik Prof. Dr. Harald Engel Dipl.-Phys., Dipl.-Math. Philipp Hövel

http://www.itp.tu-berlin.de/?stat_stat_physii_ws08

3. Übungsblatt - Statistische Physik II

Abgabe: Do. 13.11.2008 vor der Übung

Aufgabe 6 (30 Punkte): Turing-Muster im Brüsselator-Modell

1. Betrachten Sie die reaktionskinetischen Gleichungen für die Konzentrationen der diffundierenden Zwischenprodukte X und Y im Fall der folgenden chemischen Reaktion:

$$\frac{\partial \tilde{X}}{\partial \tilde{t}} = k_1 \tilde{A} - (k_2 \tilde{B} + k_4) \tilde{X} + k_3 \tilde{X}^2 \tilde{Y} + \tilde{D}_1 \nabla^2 \tilde{X}$$

$$\frac{\partial \tilde{Y}}{\partial \tilde{t}} = k_2 \tilde{B} \tilde{X} - k_3 \tilde{X}^2 \tilde{Y} + \tilde{D}_2 \nabla^2 \tilde{Y},$$

wobei die Konstanten k_i (i = 1, 2, 3, 4) Reaktionskonstanten bezeichnen.

Führen Sie dimensionslose Variable entsprechend $t=k_4\tilde{t},~X=\sqrt{k_3/k_4}\tilde{X},~Y=\sqrt{k_3/k_4}\tilde{Y},~A=\sqrt{k_1^2k_3/k_4^3}\tilde{A},~B=k_2/k_4\tilde{A},~{\rm und}~D_i=\tilde{D}_i/k_4~(i=1,2)$ ein.

Setzen Sie A im Folgenden konstant und fassen Sie B als Bifurkationsparameter auf.

- 2. Untersuchen Sie die Stabilität des homogenen stationären Zustands (HSS) gegen hinreichend kleine räumlich homogene Störungen in Abhängigkeit von *B*.
- 3. Die diffusionsgetriebene Turing-Instabilität tritt dann auf, wenn der gegen räumlich homogene Störungen stabile HSS durch räumlich inhomogene Störungen einer bestimmten Wellenzahl k destabilisiert wird.

Hinweis: Betrachten Sie den eindimensionalen Fall, d.h. $\nabla^2=\frac{d^2}{dr^2}$, in einem System der Länge L.

Bestimmen Sie die Instabilitätskurve B(k) aus der Bedingung, dass ein reeller Eigenwert λ der charakteristischen Gleichung durch Null läuft. Zeigen Sie, dass das Minimum dieser Kurve durch

$$B_{cr} = \left[1 + A\sqrt{\frac{D_1}{D_2}}\right]^2$$

$$k_{cr}^2 = \frac{A}{\sqrt{D_1 D_2}}$$

gegeben ist.

Für welche Parameter ereignet sich die Hopf-Bifurkation vor der Turing-Bifurkation? Hinweis: Im unendlich ausgedehnten System kann man die Abweichungen vom HSS zu $\exp(ikr + \lambda(k)t)$ setzen und die Randbedingungen umgehen.