Prof. Dr. Eckehard Schöll, PhD, Dr. Vasily Zaburdaev, Dipl.-Phys. Stefan Fruhner

1. Übungsblatt - Theoretische Physik III: Elektrodynamik 2008

Abgabe: Fr. 31.10.2008 bis 12:00 Uhr, Briefkasten ER-Gebäude

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Bitte das Tutorium und den Namen des Tutors auf dem Aufgabenzettel angeben! Die Abgabe kann in Dreiergruppen erfolgen.

Aufgabe 1 (8 Punkte): Differenzielle Form des Gauß'schen Gesetzes

Das Gauß'sche Gesetz der Elektrostatik $\nabla \cdot \vec{\mathbf{E}} = \rho/\epsilon_0$ legt die Ladungen als die Quellen des elektrischen Feldes fest. Führt man ein elektrisches Potential ϕ ein, so gilt $\vec{\mathbf{E}} = -\nabla \phi$. Das Potential einer Ladungsverteilung sei gegeben als

$$\phi(x, y, z) = c \frac{z^2 e^{-(x^2 + y^2 + z^2)/d}}{x^2 + y^2 + z^2},$$

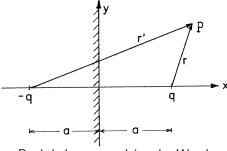
wobei c und d Konstanten seien.

- 1. Welche physikalischen Einheiten haben die Konstanten c und d?
- 2. Schreiben Sie das Potential in Kugelkoordinaten.
- 3. Berechnen Sie das elektrische Feld $ec{E}$ in Kugelkoordinaten. Benutzen Sie

$$\nabla f = (\frac{\partial}{\partial r} f) \vec{e_r} + \frac{1}{r} (\frac{\partial}{\partial \theta} f) \vec{e_\theta} + \frac{1}{r \sin \theta} (\frac{\partial}{\partial \phi} f) \vec{e_\phi}.$$

4. Berechnen Sie die Ladungsverteilung $\rho(\vec{r})$, die ein solches Feld erzeugt. Benutzen Sie

$$\nabla \cdot \vec{u} = \frac{1}{r^2} \frac{\partial r^2 u_r}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial u_\theta \sin \theta}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial u_\phi}{\partial \phi}.$$


Aufgabe 2 (5 Punkte): Integrale Form des Gauß'schen Gesetzes

Betrachten Sie als Spezialfall einer kontinuierlichen Ladungsverteilung eine homogen geladene Kugel.

- (a) Leiten Sie ausgehend von der differenziellen Form des Gauß'schen Gesetzes eine Integralform dieses Zusammenhangs zwischen dem elektrischen Feld \vec{E} und der Ladungsdiche ρ her.
- (b) Eine Kugel vom Radius R habe die konstante Ladungsdichte ρ_0 . Berechnen Sie das elektrische Feld \vec{E} für diese homogen geladene Vollkugel. Hinweis: Lösen Sie die beiden Integrale aus (a) unter Berücksichtigung der gegebenen Symmetrie. Betrachten Sie die Fälle r>R und r< R.
- (c) Stellen Sie das Ergebnis für das elektrische Feld $|\vec{E}(\vec{r})|$ grafisch dar.

Aufgabe 3 (7 Punkte): Punktladung vor einer leitenden Ebene

Eine Punktladung q befinde sich im Abstand a vor einer unendlich ausgedehnten leitenden Wand. Welche Ladungsdichte wird in der Wand induziert ? Wie groß ist die gesamte Ladung der Ebene ? Behandeln Sie das Problem durch Einführung einer Bildladung.

Punktladung q vor leitender Wand

Prof. Dr. Eckehard Schöll, PhD, Dr. Vasily Zaburdaev, Dipl.-Phys. Stefan Fruhner

Vorlesung: • Mittwoch 12:15 Uhr – 13:45 Uhr im EW 203

Freitag 10:15 Uhr – 11:45 Uhr im EW 203

Scheinkriterien: • Mindestens 50% der Übungspunkte.

- Bestandene Klausur.
- Regelmäßige und aktive Teilnahme in den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium

Literatur zur Lehrveranstaltung:

- Theoretische Physik III, Elektrodynamik (E. Schöll): Ansichtsexemplare in der Bereichsbibliothek Physik und in der Studienfachberatung; fertig gebundene Kopien in der Volkswagen-Bibliothek, Fasanenstr. 88 (1. Stock, Fa. Alpha Copy)
- W. Nolting, Grundkurs der Theoretischen Physik, Bd.3: Elektrodynamik (Springer, 2004)
- J.D. Jackson, Klassische Elektrodynamik, 4. Auflagen (Gruyter, 2006).
- P. Reineker, M. Schulz, B. M. Schulz, Theoretische Physik II (Wiley-VCH, 2006)
- T. Fliessbach, Elektrodynamik (Spektrum Akademischer Verlag, 2004)
- L. Landau, E. Lifschitz, Lehrbuch der Theoretischen Physik, Band II (Akademie-Verlag, Berlin 1989)
- R. Feynman, Feynman Lectures in Physics, Band II (Oldenbourg, 2001)
- S. Großmann, Mathematische Einführung in die Physik (Teubner, 2006).
- E. Rebhahn Theoretische Physik: Elektrodynamik (Spektrum, 2007)
- H. Mitter Elektrodynamik (BI 1990)
- H. Stumpf, W. Schuler Elektrodynamik (Vieweg 1981)

	Name	Tag	Zeit	Raum	Tel.
Sprechzeiten:	Prof. Dr. E. Schöll, PhD	Mi	14:30-15:30 Uhr	EW 735	23500
	Dr. Vasily Zaburdaev	Mi	11:00-12:00 Uhr	EW 708	25225
	Dipl-Phys. Stefan Fruhner	Di	14:00-15:00 Uhr	EW 627	27681
	Christin David	Fr	14:00-15:00 Uhr	EW 217	22848
	Martin Kliesch	Fr	16:00-17:00 Uhr	EW 217	26232

Tutorien: Die folgenden Tutoriumstermine werden angeboten

IVIO	10–12 Unr	ER 104	Christin David
Мо	12-14 Uhr	EW 229	Christin David
Di	10-12 Uhr	EW 246	Vasily Zaburdaev (englisch)
Di	12-14 Uhr	MA 644	Martin Kliesch
Mi	10-12 Uhr	EW 182	Stefan Fruhner
Do	10-12 Uhr	ER 164	Martin Kliesch

Klausur: Donnerstag den 06.02.2009 von 10:00 – 12:00 Uhr im ER 270