Prof. Dr. Eckehard Schöll, PhD, Dr. Vasily Zaburdaev, Dipl.-Phys. Stefan Fruhner

10. Übungsblatt - Theoretische Physik III: Elektrodynamik 2008

Abgabe: Mo. 19.01.2009 bis 10:00 Uhr, Briefkasten ER-Gebäude

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Bitte das Tutorium und den Namen des Tutors auf dem Aufgabenzettel angeben! Die Abgabe kann in Dreiergruppen erfolgen.

Aufgabe 27 (6 Punkte): Plattenkondensator mit inhomogenem Dielektrikum

Ein Plattenkondensator (Fläche A, Abstand d) sei ganz mit einem inhomogenem Dielektrikum (in Flächennormalenrichtung) der Dielektrizitätskonstanten $\varepsilon(x)$ ausgefüllt. Bestimmen Sie die Kapazität des Kondensators unter Vernachlässigung von Streufeldern. Wie groß ist die Kapazität wenn das Dielektrikum aus zwei Schichten mit den Dicken d_1 und d_2 und konstanten Dielektrizitätskonstanten ε_1 , ε_2 besteht?

Aufgabe 28 (6 Punkte): Kramers-Kronig-Relationen

Das Absorptionsverhalten eines Materials sei durch den Imaginärteil der komplexen dielektrischen Funktion gegeben als:

(i)
$$\epsilon''(\omega) = A \sin \omega$$
, (ii) $\epsilon''(\omega) = A(\theta(\omega_2 - \omega) - \theta(\omega_1 - \omega))$,

wobei A eine Konstante und $\theta(x)$ Heaviside-Funktion sei. Berechnen Sie mit Hilfe der Kramers-Kronig-Relation

$$\epsilon'(\omega) - 1 = PV \int \frac{\epsilon''(\tilde{\omega})}{\tilde{\omega} - \omega} d\tilde{\omega}$$

den Realteil der dielektrischen Funktion.

Tipp: Führen Sie das obige Hauptwertintegral auf ein Hauptwertintegral der Form

$$PV \int \frac{f(x)}{x} dx = \lim_{\epsilon \to 0} \int_{\epsilon}^{\infty} \frac{f(x) - f(-x)}{x} dx$$

zurück und benutzen Sie das Integral

$$\int_0^\infty \frac{\sin(cx)}{x} dx = \frac{\pi \operatorname{sgn}(c)}{2}.$$

Aufgabe 29 (8 Punkte): Fresnelsche Formeln

(a) Verwenden Sie die Stetigkeitsbedingungen sowie das Gesetz von Snellius, um die folgenden Gleichungen für die Amplitudenverhältnisse $(t_{||} = \frac{E''_{||}}{E_{||}}, \quad r_{||} = \frac{E'_{||}}{E_{||}})$ der einfallenden $(E_{||})$, reflektierten $(E'_{||})$ und transmittierten $(E''_{||})$ ebenen Wellen für parallele Polarisierung bezüglich der Einfallsebene herzuleiten (es darf der Fall $\mu = \mu'$ betrachtet werden):

$$\text{zum Vergleich}: \quad r_{||} = \frac{E'_{||}}{E_{||}} = \frac{n'^2\cos\alpha - n\sqrt{n'^2 - n^2\sin^2\alpha}}{n'^2\cos\alpha + n\sqrt{n'^2 - n^2\sin^2\alpha}}$$

(b) Stellen Sie (für $\mu=\mu'$) die Reflektivitäten $R_{||}=|r_{||}|^2$ und $R_{\perp}=|r_{\perp}|^2$ in Abhängigkeit vom Einfallswinkel α graphisch dar. Verwenden Sie

(i)
$$n=1, n'=1.5$$
 [Luft \rightarrow Glas] ,(ii) $n=1, 5, n'=1$ [Glas \rightarrow Luft].

Prof. Dr. Eckehard Schöll, PhD, Dr. Vasily Zaburdaev, Dipl.-Phys. Stefan Fruhner

Vorlesung: • Mittwoch 12:15 Uhr – 13:45 Uhr im EW 203

Freitag 10:15 Uhr – 11:45 Uhr im EW 203

Scheinkriterien: • Mindestens 50% der Übungspunkte.

- Bestandene Klausur.
- Regelmäßige und aktive Teilnahme in den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium

Literatur zur Lehrveranstaltung:

- Theoretische Physik III, Elektrodynamik (E. Schöll): nsichtsexemplare in der Bereichsbibliothek Physik und in der tudienfachberatung; fertig gebundene Kopien in der Volkswagen-Bibliothek, asanenstr. 88 (1. Stock, Fa. Alpha Copy)
- W. Nolting, Grundkurs der Theoretischen Physik, Bd.3: Elektrodynamik Springer, 2004)
- J.D. Jackson, Klassische Elektrodynamik, 4. Auflagen (Gruyter, 006).
- P. Reineker, M. Schulz, B. M. Schulz, Theoretische Physik II Wiley-VCH, 2006)
- T. Fliessbach, Elektrodynamik (Spektrum Akademischer Verlag, 2004)
- L. Landau, E. Lifschitz, Lehrbuch der Theoretischen Physik, Band I Akademie-Verlag, Berlin 1989)
- R. Feynman, Feynman Lectures in Physics, Band II (Oldenbourg, 2001)
- S. Großmann, Mathematische Einführung in die Physik (Teubner, 2006).
- E. Rebhahn Theoretische Physik: Elektrodynamik (Spektrum, 2007)
- H. Mitter Elektrodynamik (BI 1990)
- H. Stumpf, W. Schuler Elektrodynamik (Vieweg 1981)

	Name	Tag	Zeit	Raum	Tel.
Sprechzeiten:	Prof. Dr. E. Schöll, PhD	Mi	14:30-15:30 Uhr	EW 735	23500
	Dr. Vasily Zaburdaev	Mi	11:00-12:00 Uhr	EW 708	25225
	Dipl-Phys. Stefan Fruhner	Di	14:00-15:00 Uhr	EW 627	27681
	Christin David	Mi	14:30-15:30 Uhr	EW 217	22848
	Martin Kliesch	Do	16:00-17:00 Uhr	EW 217	26232

Tutorien: Die folgenden Tutoriumstermine werden angeboten

Мо	10–12 Uhr	ER 164	Christin David
Мо	12-14 Uhr	EW 229	Christin David
Di	10-12 Uhr	EW 246	Vasily Zaburdaev (englisch)
Di	12-14 Uhr	MA 644	Martin Kliesch
Mi	10-12 Uhr	EW 182	Stefan Fruhner
Dο	10-12 Uhr	FR 164	Martin Kliesch

Klausur: Freitag, den 06.02.2009 von 10:00 – 12:00 Uhr im ER 270