Prof. Dr. Eckehard Schöll, PhD, Dr. Vasily Zaburdaev, Dipl.-Phys. Stefan Fruhner

2. Übungsblatt - Theoretische Physik III: Elektrodynamik 2008

Abgabe: Fr. 07.11.2008 bis 14:00 Uhr, Briefkasten ER-Gebäude

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Bitte das Tutorium und den Namen des Tutors auf dem Aufgabenzettel angeben! Die Abgabe kann in Dreiergruppen erfolgen.

Aufgabe 4 (4 Punkte): Green'sche Identitäten

Seien Θ und Ψ zwei 2x stetig differenzierbare skalare Felder. Beweisen Sie mit Hilfe des Gauß'schen Satzes die 1. Green'sche Identität

$$\int\limits_{V} \left(\Theta \, \Delta \Psi + \nabla \, \Theta \cdot \nabla \, \Psi\right) \, dV = \int\limits_{\partial V} \Theta \frac{\partial \Psi}{\partial n} \, df$$

und die 2. Green'sche Identität

$$\int_{V} (\Theta \Delta \Psi - \Psi \Delta \Theta) \, dV = \int_{\partial V} \left(\Theta \frac{\partial \Psi}{\partial n} - \Psi \frac{\partial \Theta}{\partial n} \right) \, df,$$

wobei der Ausdruck $\frac{\partial \Theta}{\partial n}$ die Richtungsableitung längs des Normalenvektors der Oberfläche darstellt, d.h. $\frac{\partial \Theta}{\partial n}df=\nabla\Theta\cdot d\mathbf{f}$.

Aufgabe 5 (8 Punkte): Zylinderkondensator

Gegeben sei eine Ladungsverteilung $\rho(\vec{r})$, die in Zylinderkoordinaten r, ϕ, z wie folgt definiert ist:

$$\rho(r, \phi, z) = \begin{cases} 0 & , r < R_1 \\ Cr & , R_1 \le r \le R_2 \\ 0 & , r > R_2 \end{cases}$$

- (a) Berechnen Sie mit Hilfe des Gauß'schen Satzes die Feldverteilung und daraus durch Integration die Potenzialverteilung.
- (b) Bestimmen Sie das Potenzial direkt durch Lösen der Poisson-Gleichung. Berechnen Sie dann aus dem Potenzial die Feldverteilung.

Aufgabe 6 (8 Punkte): Kugelkondensator

Auf zwei konzentrischen Kugeloberflächen mit den Radien R_1 und R_2 mit $R_1 < R_2$ befinden sich die homogen verteilten Ladungen q bzw. -q.

- (a) Geben Sie die Ladungsdichte in Abhängigkeit von $|\mathbf{r}|=r$ an.
- (b) Berechnen Sie das elektrische Feld ${\bf E}$ und das skalare Potenzial Φ für die Bereiche $r \le R_1, R_1 \le r \le R_2$ und $R_2 \le r$. Außerdem soll $\Phi(r \to \infty) = 0$.
- (c) Skizzieren Sie den Verlauf des skalaren Potenzials Φ .
- (d) Berechnen Sie die Energiedichte w des elektrostatischen Feldes.
- (e) Berechnen Sie die Kapazität dieses Kugelkondensators.

Prof. Dr. Eckehard Schöll, PhD, Dr. Vasily Zaburdaev, Dipl.-Phys. Stefan Fruhner

Vorlesung: • Mittwoch 12:15 Uhr – 13:45 Uhr im EW 203

Freitag 10:15 Uhr – 11:45 Uhr im EW 203

Scheinkriterien: • Mindestens 50% der Übungspunkte.

- Bestandene Klausur.
- Regelmäßige und aktive Teilnahme in den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium

Literatur zur Lehrveranstaltung:

- Theoretische Physik III, Elektrodynamik (E. Schöll): Ansichtsexemplare in der Bereichsbibliothek Physik und in der Studienfachberatung; fertig gebundene Kopien in der Volkswagen-Bibliothek, Fasanenstr. 88 (1. Stock, Fa. Alpha Copy)
- W. Nolting, Grundkurs der Theoretischen Physik, Bd.3: Elektrodynamik (Springer, 2004)
- J.D. Jackson, Klassische Elektrodynamik, 4. Auflagen (Gruyter, 2006).
- P. Reineker, M. Schulz, B. M. Schulz, Theoretische Physik II (Wiley-VCH, 2006)
- T. Fliessbach, Elektrodynamik (Spektrum Akademischer Verlag, 2004)
- L. Landau, E. Lifschitz, Lehrbuch der Theoretischen Physik, Band II (Akademie-Verlag, Berlin 1989)
- R. Feynman, Feynman Lectures in Physics, Band II (Oldenbourg, 2001)
- S. Großmann, Mathematische Einführung in die Physik (Teubner, 2006).
- E. Rebhahn Theoretische Physik: Elektrodynamik (Spektrum, 2007)
- H. Mitter Elektrodynamik (BI 1990)
- H. Stumpf, W. Schuler Elektrodynamik (Vieweg 1981)

	Name	Tag	Zeit	Raum	Tel.
Sprechzeiten:	Prof. Dr. E. Schöll, PhD	Mi	14:30-15:30 Uhr	EW 735	23500
	Dr. Vasily Zaburdaev	Mi	11:00-12:00 Uhr	EW 708	25225
	Dipl-Phys. Stefan Fruhner	Di	14:00-15:00 Uhr	EW 627	27681
	Christin David	Mi	15:30-16:30 Uhr	EW 217	22848
	Martin Kliesch	Мо	16:00-17:00 Uhr	EW 217	26232

Tutorien: Die folgenden Tutoriumstermine werden angeboten

Mo	10-12 Uhr	ER 164	Christin David
Мо	12-14 Uhr	EW 229	Christin David
Di	10-12 Uhr	EW 246	Vasily Zaburdaev (englisch)
Di	12-14 Uhr	MA 644	Martin Kliesch
Mi	10-12 Uhr	EW 182	Stefan Fruhner
Do	10-12 Uhr	ER 164	Martin Kliesch

Klausur: Freitag, den 06.02.2009 von 10:00 – 12:00 Uhr im ER 270