Prof. Dr. Eckehard Schöll, PhD, Dr. Vasily Zaburdaev, Dipl.-Phys. Stefan Fruhner

4. Übungsblatt - Theoretische Physik III: Elektrodynamik 2008

Abgabe: Mo. 24.11.2008 bis 10:00 Uhr, Briefkasten ER-Gebäude

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Bitte das Tutorium und den Namen des Tutors auf dem Aufgabenzettel angeben! Die Abgabe kann in Dreiergruppen erfolgen.

Aufgabe 10 (8 Punkte): Biot-Savart'sches Gesetz, Helmholtz-Spule

- (a) Berechnen Sie mit Hilfe des BIOT-SAVART'SCHEN Gesetzes das Magnetfeld eines dünnen kreisförmigen Drahtrings vom Radius R, der von einem stationären Strom I durchflossen wird. Gehen Sie folgendermaßen vor:
 - Leiten Sie in Zylinderkoordinaten einen Integralausdruck für die Horizontal- und die Vertikalkomponente des Magnetfeldes ab.
 - Berechnen Sie das Integral auf der Symmetrieachse exakt.
- (b) Betrachten Sie nun zwei gleiche Drahtringe, die parallel zueinander im Abstand d angebracht sind. Wie groß muss der Abstand d gewählt werden, damit das Magnetfeld auf der Symmetrieachse des Systems zwischen den Ringen möglichst homogen ist? Hinweis: Es ist sinnvoll, die magnetische Induktion längs der Symmetrieachse um den Mittelpunkt der Anordnung in eine Taylorreihe zu entwickeln.

Aufgabe 11 (6 Punkte): Kraft zwischen zwei stromdurchflossenen Drähten

Wir betrachten zwei lange parallele Drähte. Sie mögen im Anstand d zueinander stehen und von den Strömen I_1 bzw. I_2 durchflossen sein. Berechnen Sie die Kraft, die die Drähte aufeinander ausüben. Welche Richtung hat diese Kraft (in Abhängigkeit der Stromrichtungen von I_1 und I_2)?

Aufgabe 12 (6 Punkte): Kapazitätskoeffizienten eines Kugelkondensators

Ist in einem raumladungsfreien Gebiet $(\Delta \varphi(\mathbf{r}) = 0)$ ein System von Äquipotenzialflächen $(\varphi(\mathbf{r}) = \text{const})$ bekannt, so lässt sich damit das zugehörige Kondensatorproblem lösen. Hierbei lässt man die beiden Kondensatorflächen S_{α} $(\alpha = 1, 2)$ mit je einer Äquipotenzialfläche $\varphi(\mathbf{r}) = \varphi_{\alpha}$ zusammenfallen und wählt die Integrationskonstanten in der Lösung ϕ_{β} der Poisson-Gleichung $\Delta \phi_{\beta}(\mathbf{r}) = 0$ derart, dass gilt: $\phi_{\beta}(\mathbf{r})|_{S_{\alpha}} = \delta_{\alpha\beta} (\alpha, \beta = 1, 2)$. Das Potenzial zwischen den Kondensatorflächen ist dann gegeben durch $\varphi(\mathbf{r}) = \sum_{\beta=1}^2 \varphi_{\beta}\phi_{\beta}(\mathbf{r})$. Zwischen den Ladungen und den Potenzialen auf dem Leiter besteht dann ein linearer Zusammenhang $Q_{\alpha} = \sum_{\beta=1}^2 C_{\alpha\beta}\varphi_{\beta}$ mit den Kapazitätskoffizienten $C_{\alpha\beta} = -\epsilon_0 \oint_{S_{\alpha}} \nabla \phi_{\beta}(\mathbf{r}) \cdot d\mathbf{f}$.

Verwenden Sie Ihr Ergebnis aus Aufgabe 6, um die die Kapazitätskoeffizienten durch Auswerten der Flächenintegrale für einen Kugelkondensator, der aus zwei konzentrischen Kugelschalen mit den Radien R_1 und R_2 ($R_1 < R_2$) besteht.

Achtung: Der Abgabetermin wurde auf Montag 10 Uhr verschoben

Vorlesung: • Mittwoch 12:15 Uhr – 13:45 Uhr im EW 203

• Freitag 10:15 Uhr - 11:45 Uhr im EW 203

Scheinkriterien: • Mindestens 50% der Übungspunkte.

- Bestandene Klausur.
- Regelmäßige und aktive Teilnahme in den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium

Literatur zur Lehrveranstaltung:

- Theoretische Physik III, Elektrodynamik (E. Schöll): Ansichtsexemplare in der Bereichsbibliothek Physik und in der Studienfachberatung; fertig gebundene Kopien in der Volkswagen-Bibliothek, Fasanenstr. 88 (1. Stock, Fa. Alpha Copy)
- W. Nolting, Grundkurs der Theoretischen Physik, Bd.3: Elektrodynamik (Springer, 2004)
- J.D. Jackson, Klassische Elektrodynamik, 4. Auflagen (Gruyter, 2006).
- P. Reineker, M. Schulz, B. M. Schulz, Theoretische Physik II (Wiley-VCH, 2006)
- T. Fliessbach, Elektrodynamik (Spektrum Akademischer Verlag, 2004)
- L. Landau, E. Lifschitz, Lehrbuch der Theoretischen Physik, Band II (Akademie-Verlag, Berlin 1989)
- R. Feynman, Feynman Lectures in Physics, Band II (Oldenbourg, 2001)
- S. Großmann, Mathematische Einführung in die Physik (Teubner, 2006).
- E. Rebhahn Theoretische Physik: Elektrodynamik (Spektrum, 2007)
- H. Mitter Elektrodynamik (BI 1990)
- H. Stumpf, W. Schuler Elektrodynamik (Vieweg 1981)

	Name	Tag	Zeit	Raum	Tel.
Sprechzeiten:	Prof. Dr. E. Schöll, PhD	Mi	14:30-15:30 Uhr	EW 735	23500
	Dr. Vasily Zaburdaev	Mi	11:00-12:00 Uhr	EW 708	25225
	Dipl-Phys. Stefan Fruhner	Di	14:00-15:00 Uhr	EW 627	27681
	Christin David	Fr	14:00-15:00 Uhr	EW 217	22848
	Martin Kliesch	Fr	16:00-17:00 Uhr	EW 217	26232

Tutorien: Die folgenden Tutoriumstermine werden angeboten

IVIO	10–12 Unr	ER 104	Christin David
Мо	12-14 Uhr	EW 229	Christin David
Di	10-12 Uhr	EW 246	Vasily Zaburdaev (englisch)
Di	12-14 Uhr	MA 644	Martin Kliesch
Mi	10-12 Uhr	EW 182	Stefan Fruhner
Do	10-12 Uhr	ER 164	Martin Kliesch

Klausur: Freitag, den 06.02.2009 von 10:00 – 12:00 Uhr im ER 270